
Monitoring
Lecture 13

Srinivas Narayana
http://www.cs.rutgers.edu/~sn624/553-S23

1

http://www.cs.rutgers.edu/~sn624/553-S23

Operations
• How to run and manage an Internet service?
• Monitoring, security
• Load management
• Release engineering, canarying
• Crafting and maintaining SLOs
• People and processes
• Incident response, postmortems
• Designing and managing configurations
• …

Autoscaling
• Sometimes, you just don’t have enough capacity
• Vertical autoscaling
• Horizontal autoscaling
• Don’t just rely on server utilization metrics. For example, error

codes returned very quickly have low CPU utilization
• Creating new instances is never instant
• Doesn’t always work:
• Failure to do useful work but consuming resources
• Overloading downstream dependencies by autoscaling upstream tier
• Shared quotas across tiers: reason with dependencies carefully

Load shedding
• Return errors upon high load; process what you can
• Combination of all techniques useful. But consider their

interactions carefully

Monitoring
Distributed tracing

Why do we need monitoring?
• Validating functionality: failures, exceptions, latencies
• Understanding performance hotspots during development and

after deployment
• e.g. Components inducing long tail latencies

• Securing user data, intellectual property, infrastructure
• e.g. system calls, data exfiltration, break-ins
• e.g. validating conformance to security policies: access control

• Top-level view of large systems
• e.g. inferring service dependencies
• e.g. who is inflating the (wide-area) Internet bill?

Monitoring Interactive Applications
• Distributed application components (microservices)
• Monitoring at different levels: host, network, application
• Three “pillars” of application monitoring: logs, metrics, traces
• Logs: unstructured data, highly application and event specific
• Metrics: aggregated data over time or requests per component
• E.g. system calls, file operations within a process, etc.

• Tracing: view of a single user-level request across distributed
components

Taxonomy of tracing systems
• Closed box and open box monitoring

• Libraries and agents

• System events and application events

• Inter-process and intra-process events

Goals for Tracing systems
• Application transparency
• Low overheads
• Scalability to large applications
• Privacy of user data
• Interpreting and annotating traces with additional metadata
• Joining with other telemetry data

• Today: closed box tracing using libraries to monitor inter-
process application-level events

Spans and traces
• Span: a process-level annotated event

• Trace: a series of spans linked to each other by being a part of the same
high-level client request

• Q1. How to instrument applications to produce spans?

• Q2. What should spans contain?

• Q3. How are spans related to one another to produce a trace?

• Q4. How to extract the data of spans from the application?

OpenTelemetry

Jaeger

Dapper

Instrumentation: OpenTelemetry

Instrument widely
used libraries rather

than having each
app instrument itself.

Instrumentation: OpenTelemetry

Example span: OpenTelemetry

Example span: Dapper

Combining spans into traces
• Carry all spans in headers between microservices?
• Baggage: keep it small

• Carry parent-child ID relationships

• Trace IDs: probabilistically unique integers

• Actual mechanism of propagation: HTTP/RPC protocol headers
(inter-process); function call arguments (intra-process)

Trace: putting spans together

Visualizing traces

Visualizing traces

Google Dapper system

Jaeger trace collector

Jaeger trace example

Jaeger trace example

Monitoring overheads
• Instrumentation in the

critical path: latency and
throughput issues
• Sample aggressively
• Tradeoff with accuracy

• Head-based sampling vs.
tail-based sampling
• Reduce baggage

Collection overheads
• Collection agents can take up resources
• Sample separately at the collector as well
• Sample to target # traces per unit time

Monitoring concerns
• Teasing out interactions with shared systems
• e.g., distributed storage

• Integration with public cloud systems

• Combining system and application visibility
• Uncovering bottlenecks deeper in the stack, e.g. TCP

• Batch processing applications

Outro

Summary
• Internet services have many building blocks
• Content delivery at the user edge
• Application design patterns within the data center
• Infrastructure support within the system
• Networking design to achieve high performance and agility
• Operational considerations

Where to go from here?
• Carry a deeper appreciation for supporting technologies

• Learn how to evaluate system designs
• Understand and diagnose problems lower down the stack

• Build your own better infrastructure

• Research or pursue careers developing (on) these technologies

