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Context: Networking for Internet services
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Packet processing on Linux



Modern NICs and 
architectures can also 
do direct cache access 

(DCA)



Interrupt mitigation
• Interrupt processing at high rate and priority prevents any other 

part of the system from progressing (receive livelock). 
• Mitigations:
• (1) Interrupt coalescing:
• Wait (at NIC) for more packets or a timeout until interrupting

• (2) Polling to schedule work across different sources of 
processing
• Avoid preemption 

• (3) CPU or packet quotas on polling to ensure other parts of the 
system (user space app) can progress
• Re-enable interrupts if there is less work than allotted quota



Revisiting network I/O APIs: The netmap framework. CACM’12



Allocate packet data structures 
in memory (sk_buff, mbufs, …)

(Optional) receive packet steering



Socket buffers
• Allocate in arbitrary chunks (multiples of 64 bytes)
• Support arbitrary packet sizes, fragments, deferred processing
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Other things that happen afterward
• Netfilter:  tracking TCP connection state, firewalling, NAT, …
• IP protocol processing: routing
• Transport processing (UDP/TCP protocol layer)

• Some stateless, per-packet work can be done by the NIC: 
• TSO: TCP segmentation offload
• LRO: Large Receive Offload (also applicable in software)
• IP checksum
• Ethernet CRC computation



FreeBSD sendto() code path

Netmap ATC12.

Overheads are sprinkled throughout 
the packet processing stack.



(1) Shared memory: avoid per-byte costs
• Remove user-kernel 

data copies
• Other systems use 

similar ideas:
• Finish processing 

entirely within the 
kernel (e.g., click-
kernel, eBPF)
• Expose kernel 

buffers directly to 
user space 
(PF_RING)



(2) Data representation: pre-allocated 
fixed size buffers and rings
• Avoid per-byte costs 

by pre-allocating 
chunks of a fixed 
size (max packet 
size)
• No allocation and 

freeing mbuf/sk_buff
at run time



(3) NIC/netmap ring separation
• Validate netmap ring inputs 

provided by applications
• System call still needed to 

copy netmap ring descriptor to 
NIC ring descriptor (per-
packet operation)
• Some systems avoid even this 

(DPDK, PF-RING, Solarflare
openonload) by having apps 
directly program NIC rings 
(security & fault implications)



(4) Amortize system calls by batching
• Notify the kernel about packets written for transmission or 

available for receiption



Pkt gen
• Associate shared 

buffers with fd’s
• Poll file descriptor
• Walk through the 

netmap ring to identify 
available packet 
buffers. Write and 
notify
• Poll automatically 

synchronizes rings. No 
more system calls 
needed



DPDK basic forwarding



Forwarding between two interfaces
• Move descriptors, 

no data copies



Performance (pkt gen throughput)
• Vary clock rate to 

make the workload 
CPU bound



Varying packet size



Performance with batching



Outlook: fast packet processing
• Get rid of software if you can
• Application-kernel API change: application must be modified
• Device drivers must often be modified
• Utilities in the host networking stack?
• Libpcap, Netfilter, Routing, Socket lookup/packet demuxing?

• Multitenancy: serious implications to weakening fault isolation
• Can we get isolation with efficiency?


