
Fast Packet Processing
Lecture 11

Srinivas Narayana
http://www.cs.rutgers.edu/~sn624/553-S23

1

Some slides were adapted from those of Gianni Antichi

http://www.cs.rutgers.edu/~sn624/553-S23

Context: Networking for Internet services

App
Transport
Network

Data center transport
Interconnect

Fast packet processing

Packet processing on Linux

Modern NICs and
architectures can also
do direct cache access

(DCA)

Interrupt mitigation
• Interrupt processing at high rate and priority prevents any other

part of the system from progressing (receive livelock).
• Mitigations:
• (1) Interrupt coalescing:
• Wait (at NIC) for more packets or a timeout until interrupting

• (2) Polling to schedule work across different sources of
processing
• Avoid preemption

• (3) CPU or packet quotas on polling to ensure other parts of the
system (user space app) can progress
• Re-enable interrupts if there is less work than allotted quota

Revisiting network I/O APIs: The netmap framework. CACM’12

Allocate packet data structures
in memory (sk_buff, mbufs, …)

(Optional) receive packet steering

Socket buffers
• Allocate in arbitrary chunks (multiples of 64 bytes)
• Support arbitrary packet sizes, fragments, deferred processing

*next
*prev

*next
*prev

*next
*prev

skb skb skb …
*head
*data
*tail
*end
…

buffer

pkt data
headroom

tailroom

Other things that happen afterward
• Netfilter: tracking TCP connection state, firewalling, NAT, …
• IP protocol processing: routing
• Transport processing (UDP/TCP protocol layer)

• Some stateless, per-packet work can be done by the NIC:
• TSO: TCP segmentation offload
• LRO: Large Receive Offload (also applicable in software)
• IP checksum
• Ethernet CRC computation

FreeBSD sendto() code path

Netmap ATC12.

Overheads are sprinkled throughout
the packet processing stack.

(1) Shared memory: avoid per-byte costs
• Remove user-kernel

data copies
• Other systems use

similar ideas:
• Finish processing

entirely within the
kernel (e.g., click-
kernel, eBPF)
• Expose kernel

buffers directly to
user space
(PF_RING)

(2) Data representation: pre-allocated
fixed size buffers and rings
• Avoid per-byte costs

by pre-allocating
chunks of a fixed
size (max packet
size)
• No allocation and

freeing mbuf/sk_buff
at run time

(3) NIC/netmap ring separation
• Validate netmap ring inputs

provided by applications
• System call still needed to

copy netmap ring descriptor to
NIC ring descriptor (per-
packet operation)
• Some systems avoid even this

(DPDK, PF-RING, Solarflare
openonload) by having apps
directly program NIC rings
(security & fault implications)

(4) Amortize system calls by batching
• Notify the kernel about packets written for transmission or

available for receiption

Pkt gen
• Associate shared

buffers with fd’s
• Poll file descriptor
• Walk through the

netmap ring to identify
available packet
buffers. Write and
notify
• Poll automatically

synchronizes rings. No
more system calls
needed

DPDK basic forwarding

Forwarding between two interfaces
• Move descriptors,

no data copies

Performance (pkt gen throughput)
• Vary clock rate to

make the workload
CPU bound

Varying packet size

Performance with batching

Outlook: fast packet processing
• Get rid of software if you can
• Application-kernel API change: application must be modified
• Device drivers must often be modified
• Utilities in the host networking stack?
• Libpcap, Netfilter, Routing, Socket lookup/packet demuxing?

• Multitenancy: serious implications to weakening fault isolation
• Can we get isolation with efficiency?

