
Network Virtualization
Lecture 7

Srinivas Narayana
http://www.cs.rutgers.edu/~sn624/553-S23

1

http://www.cs.rutgers.edu/~sn624/553-S23

How to virtualize
networking across a

shared compute cluster?

A detour.

Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Application: useful user-level functions

Software/hardware layering at hosts
Communication functions
broken up and “stacked”

Each layer depends on the
one below it.

Each layer supports the
one above it.

The interfaces between
layers are well-defined and

standardized.

Routing

Two key network-layer functions

• Forwarding: move packets
from routerʼs input to
appropriate router output

• Routing: determine route
taken by packets from source
to destination

• routing algorithms

• The network layer solves
the routing problem.

Analogy: taking a road
trip

§ Forwarding: process
of getting through
single exit

§ Routing: process of
planning trip from
source to destination

5
network

layer runs
everywhere

Control/Data Planes
Data plane = Forwarding
• local, per-router function
• determines how datagram

arriving on router input port is
forwarded to router output port

Control plane = Routing
• network-wide logic
• determines how datagram is routed

along end-to-end path from source
to destination endpoint
• two control-plane approaches:
• Distributed routing algorithm

running on each router
• Centralized routing algorithm

running on a (logically)
centralized machine

0111

values in arriving
packet header

1

23

Distributed Routing

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header, i.e, destination
IP address

3

Data plane
per-packet processing
(~ tens of
nanoseconds)

Control plane
Traditional routing
protocols: per route-
change processing
(~ a few tens of
seconds)

Distributed routing

What is the goal of routing?
• Efficiency: find “good” paths

• Low latency, low cost, high bandwidth, etc.
• Often translates to shortest path on a suitably modeled graph!
• Edges: link metrics. Nodes: routers.

• Internet rationale: distribute intelligence: avoid failures; scale

• Two questions: (1) what messages? (2) what algorithm?
• Link state and distance vector protocols
• Applicable when

Example 1: link state routing protocol

Q1: Information exchange
• Link state flooding: the process by which

neighborhood information of each network
router is transmitted to all other routers
• Each router sends a link state advertisement

(LSA) to each of its neighbors
• LSA contains the router ID, the IP prefix

owned by the router, the router’s neighbors,
and link cost to those neighbors
• Upon receiving an LSA, a router forwards it to

each of its neighbors: flooding

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Q1: Information exchange
• Eventually, the entire network receives LSAs

originated by each router
• LSAs put into a link state database
• LSAs occur periodically and whenever the

graph changes
• Example: if a link fails, or new router added

• The routing algorithm running at each router
can use the entire network’s graph to
compute least cost paths

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Q2: Algorithm: Dijkstra’s shortest paths

Destination
IP prefix

Output
Port on
Router

Forwarding table

Example 2: Internet Routing

The Internet is a large federated network

AT&T

Comcast

Verizon

The Internet is a large federated network

AT&T

Comcast

Verizon

Several autonomously run organizations (AS’es): No one “boss”
Organizations cooperate, but also compete

e.g., AT&T has little
commercial interest
in revealing its
internal network
structure to Verizon.

The Internet is a large federated network

AT&T

Comcast

Verizon

Several autonomously run organizations: No one “boss”
Organizations cooperate, but also compete

Message
exchanges must
not reveal internal
network details.

Algorithm must work with
“incomplete” information about
its neighbors’ internal topology.

The Internet is a large federated network

AT&T

Comcast

Verizon

Internet today: > 70,000 unique autonomous networks
Internet routers: > 800,000 forwarding table entries

Keep messages &
tables as small as
possible. Don’t flood

Algorithm must be incremental:
don’t recompute the whole table
on every message exchanged.

Inter-domain Routing
• The Internet uses Border Gateway Protocol (BGP)
• All AS’es speak BGP. It is the glue that holds the Internet

together
• BGP is a path vector protocol

Distance vector
protocols

Routing protocols

Link state
protocols

Path vector
protocols

Messages? Algorithm? Applicable within a
single AS

(1) BGP Messages
• Routing Announcements or Advertisements

• “I am here” or “I can reach here”
• Occur over a TCP connection (BGP session) between routers

• Route announcement = destination + attributes
• Destination: IP prefix

• Route Attributes:
• AS-level path
• Next hop
• Several others: origin, MED, community, etc.

• An AS promises to use advertised path to reach destination
• Only route changes are advertised after BGP session established

2b

2d

2c2a X

“I am here.”
Dst: 128.1.2.0/24
AS path: X

“I can reach X”
Dst: 128.1.2.0/24
AS path: AS2, X

AS 21b

1d

1c1a

No link metrics, distances!
Exchange paths: path vector

Loop detection is easy
(no “count to infinity”)

(2) BGP algorithm
• A BGP router does not consider every routing advertisement it

receives by default to make routing decisions!
• An import policy determines whether a route is even considered a

candidate
• Once imported, the router performs route selection
• A BGP router does not propagate its chosen path to a

destination to all other AS’es by default!
• An export policy determines whether a (chosen) path can be advertised

to other AS’es and routers

Business policy considerations drive BGP.
Not necessarily efficient outcomes!

Programmed
by network
operator

Policy arises from business relationships
• Customer-provider relationships:

• E.g., Rutgers is a customer of AT&T

• Peer-peer relationships:
• E.g., Verizon is a peer of AT&T

• Business relationships depend on where connectivity occurs
• “Where”, also called a “point of presence” (PoP)
• e.g., customers at one PoP but peers at another
• Internet-eXchange Points (IXPs) are large PoPs where ISPs come together

to connect with each other (often for free)

• When a router imports more than one route to a
destination IP prefix, it selects route based on:

1. local preference value attribute (import policy
decision -- set by network admin)

2. shortest AS-PATH
3. closest NEXT-HOP router
4. Several additional criteria: You can read up on the

full, complex, list of criteria, e.g., at
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-
protocol-bgp/13753-25.html

24

Q2. BGP Route Selection

https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html

Problems with BGP
• Not designed for efficiency

• Only a single path per destination

• Slow to converge after a change

• Vulnerable to bugs & malice

Nothing to do with
path length, delay, or

available capacity.

Approaches to bring flexibility:
Flexible control logic for path selection

(Google, Facebook)
Detour/overlay routing (Akamai)

Example 3: Layer-2 switching

Layer-2 switching
• Switch: move packets based on link layer addresses
• Provide an illusion of a single link connecting many endpoints

• Without every endpoint necessarily hearing every other endpoint
• Learning switch: zero configuration or control plane.

• All endpoints in the same IP network
• Flood packets when dest MAC address unknown
• Use source MAC of incoming packets and associate with the incoming

switch port: use later for forwarding
• Works even if endpoints move, so long as they are in the same

IP prefix

Centralized Routing

Problems with distributed control planes
• Management decisions tied to distributed protocols
• Ex: Set OSPF link weights to force traffic through desired path
• Ex: Non-deterministic network state after a link failure

• Data and control plane controlled by vendors: proprietary interfaces

?
X

Traditional IP network

Data plane

Data plane

Data plane

Data plane

Control plane

Control plane

Control plane

Control plane

Software-defined network

Data plane

Data plane

Data plane

Data plane

Logically-centralized control plane

Software-Defined Networking

SDN (1/2): Centralized control plane

Data plane

Data plane

Data plane

SDN controller

Data plane

Control planes lifted from switches
… into a logically centralized controller
… running in a compute cluster

SDN (2/2): Open interface to data plane

Data plane

Data plane

Data plane

SDN controller

Data plane

Some immediate consequences

(1) Simpler switches

Data plane

Data plane

Data plane

Small set of hardware
instructions.

SDN controller

Data plane

Data plane primitive: Match-action rules
• Match arbitrary bits in the packet header

• Match on any header, or new header
• Match exact, a subset (ternary), or over a range
• Allows any flow granularity

• Actions
• Forward to port(s), drop, send to controller, count,
• Overwrite header with mask, push or pop, …
• Forward at specific bit-rate

• Prioritized list of rules

HeaderData Match: 1000x01xx01001x

Action: fwd(port 2)

Priority: 65500

(2) Network programming abstractions

Data plane

Data plane

Data plane

Application

SDN Controller: Compiler + Run-Time

Application Application
Write modular apps and compose them

Data plane

(3) Formal verification of Network Policy

Data plane

Data plane

Data plane

Application (specified as code)

SDN Controller: Compiler + Run-Time

Data plane

Static checking

Dynamic
checking

(4) Unified network operating system

Data plane

Data plane

Data plane

Application
Network Operating System

Application Application

Separate distributed system concerns from expressing intent

Data plane
Persist app state
Graceful failover

Replication for perf
Consistent view

New technical challenges of SDN
• Availability: surviving failures of the controller
• Controller scalability: many routers, many events

• Response time: Delays between controller and routers
• Consistency: Ensuring multiple controllers behave consistently
• Designing flexible router mechanisms
• Compilation: translating intent to mechanisms
• Verification: ensuring controller policy is faithfully implemented
• Security: entire network owned if the controller is exploited
• Interoperability: legacy routers; neighboring domains; …

Virtualizing Networking in a
Shared Cluster

Typical network structure: Fat Trees

…

Rack

ToR switch

Agg switch

Spine switch Capacities must
increase as you
go up the tree

Networking in a multi-tenant cloud
• Problems: Many tenants, time-varying demands.

• Want homogeneity across data center on use of compute capacity
• Where to provision VMs?
• How to migrate VMs or scale the number of VMs?

• Idea (1): VMs get their own network addresses
• network address virtualization

• Idea (2): tenants should be able to use custom topologies
• Facilitate migration, consistent view for monitoring and maintenance

tools, etc.
• Needed “in practice” rather than “in principle”
• But, important to do!

How cloud network looks to a tenant
• Control abstraction: pipeline of lookup tables
• Packet abstraction: send to IP addresses of your own

• Processed through switch/router topology
• Data plane behavior defined through control plane configuration

• Design of NVP (nicira virtualization platform):
• Push all interesting data plane behaviors to the edge (hypervisor, OVS)
• The core of the network (switches/routers) just moves data using tunnel

headers

Topology and Address Virtualization

Topology
virtualization

Address virtualization
(separation of tenant and provider

addresses through tunneling)

Effect: Move packets
from source vNIC to

dest vNIC
Performance: Caching

Controller design
• Declarative design: language to specify tuples of rules/relations

• No need to implement a state machine to transition rule sets
• Use a compiler to emit correct, up to date logical datapaths (tuples)

• Shared-nothing parallelism to scale
• Different logical datapaths easily distributed
• “Template” rules output from logical datapaths may be independently

specialized to specific hypervisors and VMs
• Controller availability maintained using standard leader election

mechanisms
• Control and data paths fail independently

• Existing OVS hypervisor rules can process packets even if controller fails
• Fast failover through precomputed failover installed in the data path

Making old software use new networks
usually means making new networks

behave like old ones.

