Network Virtualization

Lecture 7
Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/553-S23
How to virtualize networking across a shared compute cluster?

A detour.
Software/hardware layering at hosts

Application: useful user-level functions
Transport: provide guarantees to apps
Network: best-effort global pkt delivery
Link: best-effort local pkt delivery

Communication functions broken up and “stacked”
Each layer depends on the one below it.
Each layer supports the one above it.
The interfaces between layers are well-defined and standardized.
Routing
Two key network-layer functions

- **Forwarding**: move packets from router’s input to appropriate router output
- **Routing**: determine route taken by packets from source to destination
 - routing algorithms
- The network layer solves the routing problem.

Analogy: taking a road trip
- **Forwarding**: process of getting through single exit
- **Routing**: process of planning trip from source to destination

The network layer runs everywhere.
Control/Data Planes

Data plane = Forwarding
- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port

Control plane = Routing
- network-wide logic
- determines how datagram is routed along end-to-end path from source to destination endpoint
- two control-plane approaches:
 - Distributed routing algorithm running on each router
 - Centralized routing algorithm running on a (logically) centralized machine

values in arriving packet header
Distributed Routing
Routing

Algorithm

4.1

• OVERVIEW OF NETWORK LAYER

309

values in arriving packet's header, i.e., destination IP address

Control plane

Traditional routing protocols: per route-change processing
(~ a few tens of seconds)

Data plane

per-packet processing
(~ tens of nanoseconds)

Routing Algorithm

Local forwarding table

header | output

0100	3
0110	2
0111	2
1001	1

control plane

data plane

Distributed routing
What is the goal of routing?

- **Efficiency**: find “good” paths
 - Low latency, low cost, high bandwidth, etc.
 - Often translates to *shortest path* on a suitably modeled graph!

- **Internet rationale**: *distribute intelligence*: avoid failures; scale

- **Two questions**: (1) what messages? (2) what algorithm?
 - Link state and distance vector protocols
 - Applicable when

Example 1: *link state routing* protocol
Q1: Information exchange

- **Link state flooding**: the process by which neighborhood information of each network router is transmitted to all other routers.
- Each router sends a *link state advertisement* (LSA) to each of its neighbors.
- LSA contains the router ID, the IP prefix owned by the router, the router’s neighbors, and link cost to those neighbors.
- Upon receiving an LSA, a router forwards it to each of its neighbors: *flooding*.
Q1: Information exchange

• Eventually, the entire network receives LSAs originated by each router
• LSAs put into a link state database
• LSAs occur periodically and whenever the graph changes
 • Example: if a link fails, or new router added
• The routing algorithm running at each router can use the entire network’s graph to compute least cost paths

Q2: Algorithm: Dijkstra’s shortest paths

<table>
<thead>
<tr>
<th>Destination IP prefix</th>
<th>Output Port on Router</th>
</tr>
</thead>
</table>

Forwarding table
Example 2: Internet Routing
The Internet is a large federated network
The Internet is a large federated network

Several autonomously run organizations (AS’es): No one “boss”

Organizations cooperate, but also compete

e.g., AT&T has little commercial interest in revealing its internal network structure to Verizon.
The Internet is a large **federated** network

Several autonomously run organizations: No one “boss”
Organizations cooperate, but also **compete**

Message exchanges must not reveal internal network details.

Algorithm must work with “incomplete” information about its neighbors’ internal topology.
The Internet is a large federated network

Internet today: > 70,000 unique autonomous networks
Internet routers: > 800,000 forwarding table entries

Keep messages & tables as small as possible. Don’t flood

Algorithm must be incremental: don’t recompute the whole table on every message exchanged.
Inter-domain Routing

• The Internet uses **Border Gateway Protocol (BGP)**
• **All AS’es speak BGP.** It is the glue that holds the Internet together
• **BGP is a path vector protocol**

Messages? Algorithm? Applicable within a single AS
(1) BGP Messages

- **Routing Announcements or Advertisements**
 - “I am here” or “I can reach here”
 - Occur over a TCP connection (**BGP session**) between routers

- **Route announcement = destination + attributes**
 - Destination: IP prefix

- **Route Attributes:**
 - AS-level path
 - Next hop
 - Several others: origin, MED, community, etc.

- An AS promises to use advertised path to reach destination
- Only route changes are advertised after BGP session established

Loop detection is easy
(no “count to infinity”) Exchange paths: path vector

No link metrics, distances!
(2) BGP algorithm

- A BGP router does *not* consider every routing advertisement it receives by default to make routing decisions!
 - An **import policy** determines whether a route is even considered a candidate
- Once imported, the router performs **route selection**
- A BGP router does *not* propagate its chosen path to a destination to all other AS’es by default!
 - An **export policy** determines whether a (chosen) path can be advertised to other AS’es and routers

Business policy considerations drive BGP. Not necessarily efficient outcomes!

Programmed by network operator
Policy arises from business relationships

- Customer-provider relationships:
 - E.g., Rutgers is a customer of AT&T

- Peer-peer relationships:
 - E.g., Verizon is a peer of AT&T

- Business relationships depend on where connectivity occurs
 - “Where”, also called a “point of presence” (PoP)
 - e.g., customers at one PoP but peers at another
 - Internet-eXchange Points (IXPs) are large PoPs where ISPs come together to connect with each other (often for free)
When a router imports more than one route to a destination IP prefix, it selects route based on:

1. **local preference value** attribute (import policy decision -- set by network admin)
2. shortest AS-PATH
3. closest NEXT-HOP router
Problems with BGP

- Not designed for efficiency

1. *local preference value* attribute (import policy decision -- set by network admin)
2. shortest AS-PATH
3. closest NEXT-HOP router

- Only a single path per destination
- Slow to converge after a change
- Vulnerable to bugs & malice

Approaches to bring flexibility:
- Flexible control logic for path selection (Google, Facebook)
- Detour/overlay routing (Akamai)

Nothing to do with path length, delay, or available capacity.
Example 3: Layer-2 switching
Layer-2 switching

- **Switch**: move packets based on link layer addresses
- Provide an illusion of a single link connecting many endpoints
 - Without every endpoint necessarily hearing every other endpoint
- **Learning switch**: zero configuration or control plane.
 - All endpoints in the same IP network
 - Flood packets when dest MAC address unknown
 - Use source MAC of incoming packets and associate with the incoming switch port: use later for forwarding
- Works even if endpoints move, so long as they are in the same IP prefix
Centralized Routing
Problems with distributed control planes

- Management decisions tied to distributed protocols
 - Ex: Set OSPF link weights to force traffic through desired path
 - Ex: Non-deterministic network state after a link failure
- Data and control plane controlled by vendors: proprietary interfaces
Traditional IP network
Software-defined network

Logically-centralized control plane

Data plane

Data plane

Data plane

Data plane
Software-Defined Networking
SDN (1/2): Centralized control plane

Control planes lifted from switches
… into a logically centralized controller
… running in a compute cluster
SDN (2/2): Open interface to data plane
Some immediate consequences
(1) Simpler switches

Small set of hardware instructions.
Data plane primitive: Match-action rules

• Match arbitrary bits in the packet header

 - Match on any header, or new header
 - Match exact, a subset (ternary), or over a range
 - Allows any flow granularity

• Actions
 - Forward to port(s), drop, send to controller, count,
 - Overwrite header with mask, push or pop, …
 - Forward at specific bit-rate

• Prioritized list of rules
Write modular apps and compose them
(3) Formal verification of Network Policy

Static checking Application (specified as code)

SDN Controller: Compiler + Run-Time

Data plane

Dynamic checking

Data plane

Data plane

Data plane
(4) Unified network operating system

Separate distributed system concerns from expressing intent

Persist app state
Graceful failover
Replication for perf
Consistent view
New technical challenges of SDN

• Availability: surviving failures of the controller
• Controller scalability: many routers, many events
 • Response time: Delays between controller and routers
• Consistency: Ensuring multiple controllers behave consistently
• Designing flexible router mechanisms
• Compilation: translating intent to mechanisms
• Verification: ensuring controller policy is faithfully implemented
• Security: entire network owned if the controller is exploited
• Interoperability: legacy routers; neighboring domains; …
Virtualizing Networking in a Shared Cluster
Typical network structure: Fat Trees

- Spine switch
- Agg switch
- ToR switch

Capacities must increase as you go up the tree.
Networking in a multi-tenant cloud

• Problems: Many tenants, time-varying demands.
 • Want homogeneity across data center on use of compute capacity
 • Where to provision VMs?
 • How to migrate VMs or scale the number of VMs?

• Idea (1): VMs get their own network addresses
 • network address virtualization

• Idea (2): tenants should be able to use custom topologies
 • Facilitate migration, consistent view for monitoring and maintenance tools, etc.
 • Needed “in practice” rather than “in principle”
 • But, important to do!
How cloud network looks to a tenant

• Control abstraction: pipeline of lookup tables
• Packet abstraction: send to IP addresses of your own
 • Processed through switch/router topology
 • Data plane behavior defined through control plane configuration
• Design of NVP (nicira virtualization platform):
 • Push all interesting data plane behaviors to the edge (hypervisor, OVS)
 • The core of the network (switches/routers) just moves data using tunnel headers
Topology and Address Virtualization

Effect: Move packets from source vNIC to dest vNIC

Performance: Caching

Topology virtualization

Address virtualization

(separation of tenant and provider addresses through tunneling)
Controller design

• Declarative design: language to specify tuples of rules/relations
 • No need to implement a state machine to transition rule sets
 • Use a compiler to emit correct, up to date logical datapaths (tuples)

• Shared-nothing parallelism to scale
 • Different logical datapaths easily distributed
 • “Template” rules output from logical datapaths may be independently specialized to specific hypervisors and VMs

• Controller availability maintained using standard leader election mechanisms

• Control and data paths fail independently
 • Existing OVS hypervisor rules can process packets even if controller fails
 • Fast failover through precomputed failover installed in the data path
Making old software use new networks usually means making new networks behave like old ones.