
Network Virtualization
Lecture 6

Srinivas Narayana
http://www.cs.rutgers.edu/~sn624/553-S23

1

http://www.cs.rutgers.edu/~sn624/553-S23


Building Blocks of Containers



What goes into a container?
• Not a natively hardware-supported abstraction like privilege 

rings, which enable OSes (and virtual machines)
• Instead, use software mechanisms built into OS kernels
• Containers: a loose conglomeration of kernel-level mechanisms

• Access isolation of global resources (namespaces)
• Resource/Performance isolation of global resources (control groups)
• Sharing data on filesystem for efficiency (union filesystems)

• (need to add on isolation of unique data)
• Security mechanisms: appArmor,  capabilities

• Kludgy, but essential since hard to get it right from scratch



Namespaces
• Access isolation
• Show an instance of a global resource as available to all 

processes inside a namespace
• Changes visible to other processes within namespace

• But invisible outside the namespace
• Show different “copies” of resources associated with the kind of 

namespace
• Network, IPC, mount, PID, …

• Every process starts in init namespace, change with setns
• Network: (software/hardware) network device; routing rules;  

port numbers. veth pair connects two network namespaces



Control groups
• Resource/Performance isolation
• Subsystem: a specific kind of resource

• CPU time, memory, network bandwidth, block device access, priority, 
CPU and memory (numa) node assignment. Many configurable 
parameters per subsystem

• Control group or cgroup: a set of processes
• If fork(), inherit a bunch of attributes including parent’s cgroup

• Hierarchy: a tree where each node is a cgroup
• Many hierarchies can exist, unlike process hierarchy

• Each subsystem “mounted” onto one hierarchy
• Possible to use a single hierarchy for multiple subsystems (resources)

• Every process has exactly one reservation per resource



Union FS: “container images too big”
• Directory structures on disk are typically “mounted” at some point in 

the virtual filesystem (/, /home/users/name, etc.)
• Processes in containers want mostly the same files, with a small 

number of modifications per process or container
• Think: common third-party packages and shared library images
• (while supporting the need for distinct libraries/versions across containers)
• Similar use cases in the past: data on a read-only medium which needed a 

small number of updates and refresh into new medium
• Union filesystem: maintain a stack of filesystems at each mount 

point. Only the latest one is writable. Lower layers are read-only.
• Write fresh to the top. Update by copy up. Deletion requires a special 

mechanism to record a file that isn’t there (whiteout). Cache heavily.
• Virtual Filesystem layer accomplishes this with minimal changes to 

underlying filesystem.



Orchestrating Containers



Components you need?
• The machines (nodes), pods (container-ish), images
• Controllers and mechanization (“choreography”)

• Provisioning pods and nodes with desired resources (kube-scheduler + kubelet)
• Replicating according to system metrics or demand (autoscaling controller)
• Detecting and reacting to failures (replicaSet controller)

• Maintaining the cluster’s desired and observed state
• Persistent data store (etcd; consensus protocol -- RAFT)
• How should everyone see and access this? api server (versioning, etc.)

• Desired state: declaratively specified. Label selectors to group.
• … even when we say kubectl do this and that

• Naming and connecting to remote entities
• Pods shouldn’t have to know physical addresses; IP address management for 

applications connecting from within container network namespaces
• Routing between nodes; within a node from/to a pod on the node
• Container Network Interface



Network Virtualization



Virtualizing Networking on a 
Single Machine



How to virtualize I/O?
• How device I/O works in general:

• Registers. Interrupts and polling. Shared memory. DMA.
• Full virtualization: trap and emulate any I/O data operation 

• e.g., moving each byte of guest data through VMM memory is too expensive 
(not a “zero copy” solution)

• Xen’s initial approach (SOSP’03)
• Descriptor rings: async I/O over memory shared between hypervisor & guest

• Hypervisor responsibilities for virtualization:
• Validate data pages pointed from guest-enqueued descriptors
• Remap data pages (avoid time-of-check to time-of-use), even if not copy
• (incoming) find which VM to signal? Send event notification to guest OS

• Hypervisor intervention to check every descriptor is bad for perf



Direct I/O
• Key idea: enable memory protections in hardware

• Processors have a memory management unit (MMU) for segmentation 
and paging related memory protections

• IOMMU: a hardware page table to translate and validate 
addresses for I/O accesses through DMA (on processor)
• Device features to also support:

• Separate interrupts going to each guest (rather than shared across 
guests or with hypervisor)

• Separate address space identifier (“tagged” page table) per guest
• Sensitive registers on device cannot be controlled directly by guest
• Must classify incoming packets at NIC to the appropriate guest’s 

memory region
• But do all this while allowing device to maintain all this info



Single Root I/O virtualization (SR-IOV)
• PCIe capability: expose a single physical device (“physical 

function”) as multiple virtual devices (“virtual functions”), 
dedicated to each guest OS
• Layer-2 switching to classify packets to each guest’s VF

• Corresponding IOMMU, interrupts invoked
• Mainly performance-critical registers replicated per VF
• Share “insensitive” per-device resources across guests

• MAC/PHY logic, packet classification logic
• Sensitive configuration or register access mediated through a 

driver component in domain0



Single-Root IO Virtualization (SR-IOV)
• Exposing device as dedicated device provides several benefits
• Configure, monitor, view using “typical” tools (iproute2, 

wireshark, …)
• VFs are now “Virtual NICs” (vNICs) with their own MAC 

address, IP Address, ingress/egress forwarding rules, etc. 
• Decoupled from corresponding physical device parameters



How about virtualizing 
networking across a 

shared compute cluster?

A detour…



Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Application: useful user-level functions

Software/hardware layering at hosts
Communication functions 
broken up and “stacked”

Each layer depends on the 
one below it.

Each layer supports the 
one above it.

The interfaces between 
layers are well-defined and 

standardized.



Routing



Two key network-layer functions

• Forwarding: move packets 
from routerʼs input to 
appropriate router output

• Routing: determine route 
taken by packets from source 
to destination

• routing algorithms

• The network layer solves 
the routing problem.

Analogy: taking a road 
trip

§ Forwarding: process 
of getting through 
single exit

§ Routing: process of 
planning trip from 
source to destination

18
network

layer runs
everywhere



Distributed Routing



Control/Data Planes
Data plane = Forwarding
• local, per-router function
• determines how datagram 

arriving on router input port is 
forwarded to router output port

Control plane = Routing
• network-wide logic
• determines how datagram is routed 

along end-to-end path from source 
to destination endpoint
• two control-plane approaches:
• Distributed routing algorithm 

running on each router
• Centralized routing algorithm 

running on a (logically) 
centralized machine

0111

values in arriving 
packet header

1

23



Routing
Algorithm

data
plane

control
plane

4.1  •  OVERVIEW OF NETWORK LAYER     309

tables. In this example, a routing algorithm runs in each and every router and both 
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with 
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages 
containing routing information according to a routing protocol! We’ll cover routing 
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can 
be further illustrated by considering the hypothetical (and unrealistic, but technically 
feasible) case of a network in which all forwarding tables are configured directly by 
human network operators physically present at the routers. In this case, no routing 
protocols would be required! Of course, the human operators would need to interact 
with each other to ensure that the forwarding tables were configured in such a way 
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have 
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd   309 11/02/16   3:14 PM

1

2

0111

values in arriving 
packet header, i.e, destination 
IP address

3

Data plane
per-packet processing
(~ tens of 
nanoseconds)

Control plane
Traditional routing 
protocols: per route-
change processing
(~ a few tens of 
seconds)

Distributed routing



What should routing optimize?
• Efficiency goals:  “good” paths

• Low latency,  low cost, high bandwidth, etc.
• Often translates to shortest path on a suitably modeled graph!
• Edges: link metrics. Nodes: routers.

• Internet rationale: keep it distributed: avoid failures; scaling.

• Two questions: (1) what messages? (2) what algorithm?
• What is the algorithm computing? – is already known (shortest path)
• Link state and distance vector protocols
• Applicable when 



The Internet is a large federated network

AT&T

Comcast

Verizon



The Internet is a large federated network

AT&T

Comcast

Verizon

Several autonomously run organizations (AS’es): No one “boss”
Organizations cooperate, but also compete

e.g., AT&T has little  
commercial interest 
in revealing its 
internal network 
structure to Verizon.



The Internet is a large federated network

AT&T

Comcast

Verizon

Several autonomously run organizations: No one “boss”
Organizations cooperate, but also compete

Message 
exchanges must
not reveal internal  
network details.

Algorithm must work with 
“incomplete” information about 
its neighbors’ internal topology.



The Internet is a large federated network

AT&T

Comcast

Verizon

Internet today: > 70,000 unique autonomous networks
Internet routers: > 800,000 forwarding table entries

Keep messages & 
tables as small as 
possible. Don’t flood

Algorithm must be incremental: 
don’t recompute the whole table 
on every message exchanged.



Inter-domain Routing
• The Internet uses Border Gateway Protocol (BGP)
• All AS’es speak BGP. It is the glue that holds the Internet 

together
• BGP is a path vector protocol

Distance vector 
protocols

Routing protocols

Link state 
protocols

Path vector 
protocols

Messages? Algorithm? Applicable within a 
single AS



(1) BGP Messages
• Routing Announcements or Advertisements

• “I am here” or “I can reach here”
• Occur over a TCP connection (BGP session) between routers

• Route announcement = destination + attributes
• Destination: IP prefix

• Route Attributes:
• AS-level path
• Next hop
• Several others: origin, MED, community, etc.

• An AS promises to use advertised path to reach destination
• Only route changes are advertised after BGP session established

2b

2d

2c2a X

“I am here.”
Dst: 128.1.2.0/24
AS path: X

“I can reach X”
Dst: 128.1.2.0/24
AS path: AS2, X

AS 21b

1d

1c1a

No link metrics, distances! 
Exchange paths: path vector

Loop detection is easy
(no “count to infinity”)



(2) BGP algorithm
• A BGP router does not consider every routing advertisement it 

receives by default to make routing decisions!
• An import policy determines whether a route is even considered a 

candidate
• Once imported, the router performs route selection
• A BGP router does not propagate its chosen path to a 

destination to all other AS’es by default!
• An export policy determines whether a (chosen) path can be advertised 

to other AS’es and routers

Business policy considerations drive BGP. 
NOT efficiency considerations.

Programmed 
by network 
operator



Policy arises from business relationships
• Customer-provider relationships:

• E.g., Rutgers is a customer of AT&T

• Peer-peer relationships:
• E.g., Verizon is a peer of AT&T

• Business relationships depend on where connectivity occurs
• “Where”, also called a “point of presence” (PoP)
• e.g., customers at one PoP but peers at another
• Internet-eXchange Points (IXPs) are large PoPs where ISPs come together 

to connect with each other (often for free)



• When a router imports more than one route to a 
destination IP prefix, it selects route based on:

1. local preference value attribute (import policy 
decision -- set by network admin)

2. shortest AS-PATH 
3. closest NEXT-HOP router
4. Several additional criteria: You can read up on the 

full, complex, list of criteria, e.g., at 
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-
protocol-bgp/13753-25.html

34

Q2. BGP Route Selection

https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html


Problems with BGP
• Not designed for efficiency

• Only a single path per destination

• Slow to converge after a change

• Vulnerable to bugs & malice

Nothing to do with 
path length, delay, or 

available capacity.

Approaches to bring flexibility:
Flexible control logic for path selection

(Google, Facebook)
Detour/overlay routing (Akamai)



So far: layer-3. But “layer-2” exists too
• Switch: move packets based on link layer addresses
• Provide an illusion of a single link connecting many endpoints

• Without every endpoint necessarily hearing every other endpoint
• Learning switch: zero configuration or control plane.

• All endpoints in the same IP network
• Flood packets when dest MAC address unknown
• Use source MAC of incoming packets and associate with the incoming 

switch port: use later for forwarding
• Works even if endpoints move, so long as they are in the same 

IP prefix



Centralized Routing



Routing
Algorithm

Traditionally:

Individual 
routing 
algorithm 
components in 
each and every 
router interact in 
the control plane

data
plane

control
plane

4.1  •  OVERVIEW OF NETWORK LAYER     309

tables. In this example, a routing algorithm runs in each and every router and both 
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with 
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages 
containing routing information according to a routing protocol! We’ll cover routing 
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can 
be further illustrated by considering the hypothetical (and unrealistic, but technically 
feasible) case of a network in which all forwarding tables are configured directly by 
human network operators physically present at the routers. In this case, no routing 
protocols would be required! Of course, the human operators would need to interact 
with each other to ensure that the forwarding tables were configured in such a way 
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have 
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd   309 11/02/16   3:14 PM

38

1

2

0111

values in arriving 
packet header

3

Data plane
per-packet processing
(~ tens of 
nanoseconds)

Control plane
per route-change 
processing
(~ a few seconds)

Control & Data Planes inside a router



Problems with traditional control planes
• Management decisions tied to distributed protocols
• Ex: Set OSPF link weights to force traffic through desired path
• Ex: Non-deterministic network state after a link failure

• Data and control plane controlled by vendors: proprietary interfaces

?
X



Traditional IP network

Data plane

Data plane

Data plane

Data plane

Control plane

Control plane

Control plane

Control plane



Software-defined network

Data plane

Data plane

Data plane

Data plane

Logically-centralized control plane



Software-Defined Networking



SDN (1/2): Centralized control plane

Data plane

Data plane

Data plane

SDN controller

Data plane

Control planes lifted from switches
… into a logically centralized controller
… running in a compute cluster



SDN (2/2): Open interface to data plane 

Data plane

Data plane

Data plane

SDN controller

Data plane



Some immediate consequences



(1) Simpler switches

Data plane

Data plane

Data plane

Small set of hardware 
instructions.

SDN controller

Data plane



Data plane primitive: Match-action rules
• Match arbitrary bits in the packet header

• Match on any header, or new header
• Match exact, a subset (ternary), or over a range
• Allows any flow granularity

• Actions
• Forward to port(s), drop, send to controller, count,
• Overwrite header with mask, push or pop, …
• Forward at specific bit-rate

• Prioritized list of rules

HeaderData Match: 1000x01xx01001x

Action: fwd(port 2)

Priority: 65500



(2) Network programming abstractions

Data plane

Data plane

Data plane

Application

SDN Controller: Compiler + Run-Time

Application Application
Write modular apps and compose them

Data plane



(3) Formal verification of Network Policy

Data plane

Data plane

Data plane

Application (specified as code)

SDN Controller: Compiler + Run-Time

Data plane

Static checking

Dynamic 
checking



(4) Unified network operating system

Data plane

Data plane

Data plane

Application
Network Operating System

Application Application

Separate distributed system concerns from expressing intent

Data plane
Persist app state
Graceful failover

Replication for perf
Consistent view



Technical challenges of SDN
• Availability: surviving failures of the controller & data plane
• Controller scalability: many routers, many events

• Response time: Delays between controller and routers
• Consistency: Ensuring multiple controllers behave consistently
• Designing flexible router mechanisms
• Compilation: translating intent to mechanisms
• Verification: ensuring controller policy is faithfully implemented
• Security: entire network owned if the controller is exploited
• Interoperability: legacy routers? neighboring domains?

• Developing interfaces that are portable across hardware vendors



Virtualizing Networking in a 
Shared Cluster



Networking in a multi-tenant cloud
• L2 and L3 networking: basics
• A typical public cloud network topology: Tree upon ToRs
• Problems: Many tenants, time-varying demands.

• Want homogeneity across data center on use of compute capacity
• Where to provision VMs?
• How to migrate VMs or scale the number of VMs?

• Ideas: VMs get their own network addresses 
• network address virtualization

• Ideas: tenants should be able to use custom topologies
• Needed “in practice” rather than “in principle”. But important to do.



How cloud network looks to tenant
• Control abstraction: pipeline of lookup tables.

• Example: L2, ACL, L2.
• Example: L2, L3, ACL

• Packet abstraction: send to IP addresses of your own
• Processed through switch/router topology
• Data plane behavior defined through control plane configuration

• Design of NVP: (nicira virtualization platform):
• Push all interesting data plane behaviors to the edge (hypervisor, OVS)
• The core of the network (switches/routers) just moves data using tunnel 

headers



Datapath design
• (1) Topology virtualization: Implement tenant control plane 

policies faithfully
• Compute match-action forwarding rules inside a pipeline of logical data 

paths. Plumb them to each other carefully.
• (2) Address virtualization: Get hypervisors to tunnel to each 

other based on forwarding outcomes from tenant’s logical data 
paths

• Separate protocol to communicate the hypervisor’s provider-address, 
hosted VM identifiers, and logical port identifiers for each VM to the 
controller

• Eventually send packet to the local virtual NIC of the VM
• Use caching heavily to avoid many table lookups



Controller design
• Declarative design: language to specify tuples of rules/relations

• No need to implement a state machine to transition rule sets
• Use a compiler to emit correct, up to date logical datapaths (tuples)

• Shared-nothing parallelism to scale
• Different logical datapaths easily distributed
• “Template” rules output from logical datapaths may be independently 

specialized to specific hypervisors and VMs
• Controller availability maintained using standard leader election 

mechanisms
• Control and data paths fail independently

• Existing OVS hypervisor rules can process packets even if controller fails
• Fast failover through precomputed failover installed in the data path



Making old software use new networks usually means 
making new networks behave like old ones.


