Network Virtualization

Lecture 6
Srinivas Narayana
http://www.cs.rutgers.edu/~sn624/553-S23

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/553-S23

Building Blocks of Containers

What goes into a container?

* Not a natively hardware-supported abstraction like privilege
rings, which enable OSes (and virtual machines)

 Instead, use software mechanisms built into OS kernels

 Containers: a loose conglomeration of kernel-level mechanisms
 Access isolation of global resources (namespaces)
» Resource/Performance isolation of global resources (control groups)

« Sharing data on filesystem for efficiency (union filesystems)
» (need to add on isolation of unique data)

« Security mechanisms: appArmor, capabilities
 Kludgy, but essential since hard to get it right from scratch

Namespaces

* Access iIsolation

« Show an instance of a global resource as available to all
processes inside a namespace

» Changes visible to other processes within namespace
 But invisible outside the namespace

« Show different “copies” of resources associated with the kind of

namespace
* Network, IPC, mount, PID, ...

» Every process starts in init namespace, change with setns

* Network: (software/hardware) network device; routing rules;
port numbers. veth pair connects two network namespaces

Control groups

 Resource/Performance isolation

« Subsystem: a specific kind of resource

« CPU time, memory, network bandwidth, block device access, priority,
CPU and memory (numa) node assignment. Many configurable
parameters per subsystem

 Control group or cgroup: a set of processes
« |f fork(), inherit a bunch of attributes including parent’s cgroup

* Hierarchy: a tree where each node is a cgroup
« Many hierarchies can exist, unlike process hierarchy

« Each subsystem “mounted” onto one hierarchy
* Possible to use a single hierarchy for multiple subsystems (resources)

* Every process has exactly one reservation per resource

Union FS: “containerimages-too-big-

* Directory structures on disk are typically “mounted” at some point in
the virtual filesystem (/, /home/users/name, etc.)

* Processes in containers want mostly the same files, with a small
number of modifications per process or container
« Think: common third-party packages and shared library images
 (while supporting the need for distinct libraries/versions across containers)

« Similar use cases in the past: data on a read-only medium which needed a
small number of updates and refresh into new medium

 Union filesystem: maintain a stack of filesystems at each mount
point. Only the latest one is writable. Lower layers are read-only.

* Write fresh to the top. Update by copy up. Deletion requires a special
mechanism to record a file that isn’t there (whiteout). Cache heavily.

* Virtual Filesystem layer accomplishes this with minimal changes to
underlying filesystem.

Orchestrating Containers

Components you need?

* The machines (nodes), pods (container-ish), images

» Controllers and mechanization (“choreography”)
 Provisioning pods and nodes with desired resources (kube-scheduler + kubelet)
» Replicating according to system metrics or demand (autoscaling controller)
» Detecting and reacting to failures (replicaSet controller)

* Maintaining the cluster’s desired and observed state
» Persistent data store (etcd; consensus protocol -- RAFT)
« How should everyone see and access this? api server (versioning, etc.)

* Desired state: declaratively specified. Label selectors to group.
* ... even when we say kubectl do this and that

* Naming and connecting to remote entities

* Pods shouldn’t have to know ph%sical addresses; I[P address management for

applications connecting from within container network namespaces
« Routing between nodes; within a node from/to a pod on the node

 Container Network Interface

Network Virtualization

Virtualizing Networking on a
Single Machine

How to virtualize 1/0O?

« How device I/O works in general:
« Registers. Interrupts and polling. Shared memory. DMA.

* Full virtualization: trap and emulate any I/O data operation

* e.g., moving each byte of guest data through VMM memory is too expensive
(not a “zero copy” solution)

« Xen’s initial approach (SOSP’03)

 Descriptor rings: async 1/0O over memory shared between hypervisor & guest

* Hypervisor responsibilities for virtualization:
 Validate data pages pointed from guest-enqueued descriptors
« Remap data pages (avoid time-of-check to time-of-use), even if not copy
* (incoming) find which VM to signal? Send event notification to guest OS

 Hypervisor intervention to check every descriptor is bad for perf

Direct 1/0

» Key idea: enable memory protections in hardware

* Processors have a memory management unit (MMU) for segmentation
and paging related memory protections

* IOMMU: a hardware page table to translate and validate
addresses for 1/0 accesses through DMA (on processor)

 Device features to also support:

e Separate interrupts going to each guest (rather than shared across
guests or with hypervisor)

« Separate address space identifier (“tagged” page table) per guest

« Sensitive registers on device cannot be controlled directly by guest

- Must classify incoming packets at NIC to the appropriate guest’s
memory region

 But do all this while allowing device to maintain all this info

Single Root I/O virtualization (SR-IOV)

* PCle capability: expose a single physical device (“physical
function”) as multiple virtual devices (“virtual functions”),
dedicated to each guest OS

 Layer-2 switching to classify packets to each guest’s VF
» Corresponding IOMMU, interrupts invoked

* Mainly performance-critical registers replicated per VF

« Share “insensitive” per-device resources across guests
 MAC/PHY logic, packet classification logic

» Sensitive configuration or register access mediated through a
driver component in domainQ

Single-Root 10 Virtualization (SR-IOV)

» Exposing device as dedicated device provides several benefits

« Configure, monitor, view using “typical” tools (iproute2,
wireshark, ...)

* VFs are now “Virtual NICs” (vNICs) with their own MAC
address, |IP Address, ingress/egress forwarding rules, etc.
» Decoupled from corresponding physical device parameters

How about virtualizing
networking across a
shared compute cluster?

A detour...

Software/hardware layering at hosts

Communication functions
Application: useful user-level functions broken up and “stacked”

Each layer depends on the
Transport: provide guarantees to apps one below it.

Each layer supports the
one above it.

Network: best-effort global pkt delivery

The interfaces between
layers are well-defined and
standardized.

Link: best-effort local pkt delivery

Two key network-layer functions

» Forwarding: move packets Analogy: taking a road
from router’s input to trip
appropriate router output

of getting through

 Routing: determine route single exit

taken by packets from source
to destination

* routing algorithms

2 .

% = Routing: process of
T % planning trip from
N\ . source to destination

)
—\
S SangamonfS
S MorgaVn st
y Femval d UMIT
el 3:22: 20: (30
GARMIN
Q Ve .
E' : everywhere

runs
§ —
ol

* The network layer solves
the routing problem.

Distributed Routing

Control/Data Planes

Data plane = Forwarding Control plane = Routing

* local, per-router function * network-wide logic

* determines how datagram » determines how datagram is routed
arriving on router input port is along end-to-end path from source
forwarded to router output port to destination endpoint

 two control-plane approaches:
* Distributed routing algorithm

values in arriving running on each router
packet header : : :
. Centralized routing algorithm

4 running on a (logically)
_’% centralized machine

Distributed routing

Control plane

Traditional routing <>

== >

protocols: per route- =———p Rolingn,. _—— | = —'@» control
change processing A'*”““*‘%;L%// plane
(~ a few tens of S e e SE
seconds) = [[data

oo | 2 v plane
Data plane [|
per_packet processing u e I —— -
(~ tens of
nanoseconds) B o =S

values in arriving /

packet header, i.e, destination
IP address

What should routing optimize®?

é.@ N
- Efficiency goals: “good” paths "\‘éj}

* Low latency, low cost, high bandwidth, etc.
« Often translates to shortest path on a suitably modeled graph!
« Edges: link metrics. Nodes: routers.

* Internet rationale: keep it distributed: avoid failures; scaling.

» Two questions: (1) what messages? (2) what algorithm?
« What is the algorithm computing? — is already known (shortest path)
* Link state and distance vector protocols
* Applicable when

The Internet is a large federated network

-y

(«i)))

e
o™=

The Internet is a large federated network

Several autonomously run organizations (AS’es): No one “boss”
Organizations cooperate, but also compete

(«i)))

e.g., AT&T has little
commercial interest

In revealing its
internal network
structure to Verizon.

The Internet is a large federated network

Several autonomously run organizations: No one “boss”
Organizations cooperate, but also compete @

Message
exchanges must
not reveal internal
network details.

Algorithm must work with
“incomplete” information about
its neighbors’ internal topology.

The Internet is a large federated network

Internet today: > 70,000 unique autonomous networks
Internet routers: > 800,000 forwarding table entries @

0oL &
| \ -

Keep messages & r
tables as small as t\é
possible. Don’t flood

Algorithm must be incremental:

don’t recompute the whole table
on every message exchanged.

Inter-domain Routing

* The Internet uses Border Gateway Protocol (BGP)

* All AS’es speak BGP. It is the glue that holds the Internet
together

« BGP is a path vector protocol

Routing protocols

6 N Link state Distance vector Path vector
\k« J protocols protocols protocols
&

Messages? Algorithm? Applicable within a
single AS

E%\

Loop detection is easy
(1) BG P Messages ‘r/ (no “count to infinity”)
fxchange paths: path vector

* Routing Announcements or Advertisements No link metrics, distances!
* “ am here” or “| can reach here”
* Occur over a TCP connection (BGP session) between/routers

 Route announcement = destination + attributes

“I am here.”
Destlnatllon. IP |.3ref|x / . DI ;aq 2rc;a1cg >(§/24 AS 2 ;);t.p ; f::.;2.0/24
* Route Attributes: (o -—-i-—-X1cJ) AS path: AS2, X ‘
* AS-level path N PR .
* Next hop ‘
- Several others: origin, MED, community, etc.

* An AS promises to use advertised path to reach destination
* Only route changes are advertised after BGP session established

(2) BGP algorithm &«é‘i

« A BGP router does not consider every routing advertisement it
receives by default to make routing decisions!

* An import policy determines whether a route is even considered a
candidate

* Once imported, the router performs route selection Erogrtammked
y networ

« A BGP router does not propagate its chosen path to a operator
destination to all other AS’es by defaduit:

* An export policy determines whether a (chosen) path can be advertised
to other AS’es and routers

Business policy considerations drive BGP.
NOT efficiency considerations.

Policy arises from business relationships

« Customer-provider relationships:
» E.g., Rutgers is a customer of AT&T

* Peer-peer relationships:
* E.g., Verizon is a peer of AT&T

* Business relationships depend on where connectivity occurs
* “Where”, also called a “point of presence” (PoP)
* e.g., customers at one PoP but peers at another

* Internet-eXchange Points (IXPs) are large PoPs where ISPs come together
to connect with each other (often for free)

Q2. BGP Route Selection &@‘ﬁ)

* When a router imports more than one route to a
destination IP prefix, it selects route based on:

1. local preference value attribute (import policy
decision -- set by network admin)

2. shortest AS-PATH
3. closest NEXT-HOP router

4. Several additional criteria: You can read up on the

full, complex, list of criteria, e.qg., at
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-
protocol-bgp/13753-25.html

34

https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html

Approaches to bring flexibility:
: Flexible control logic for path selection
Problems with BGP Google. Facebook)
Detour/overlay routing (Akamai)
» Not designed for efficiency

1. local preference value attribute (import policy , _
decision -- set by network admin) Nothing to do with

2. shortest AS-PATH
3. closest NEXT-HOP router

path length, delay, or
available capacity.

Traceroute Path 1: from Guadalajara, Mexico to Washington, D.C. via Belarus

* Only a single path per destination

 Slow to converge after a change

TART 1 Guadaisara, @
Meouico

* Vulnerable to bugs & malice

erenesys

So far: layer-3. But “layer-2” exists too

« Switch: move packets based on link layer addresses

 Provide an illusion of a single link connecting many endpoints
« Without every endpoint necessarily hearing every other endpoint

* Learning switch: zero configuration or control plane.
 All endpoints in the same IP network
* Flood packets when dest MAC address unknown
» Use source MAC of incoming packets and associate with the incoming
switch port: use later for forwarding
* Works even if endpoints move, so long as they are in the same
IP prefix

Centralized Routing

Control & Data Planes inside a router

Control plane >

Routing
Algorithm ‘:

per route-change
processing

(~ a few seconds) --

Data plane —

per-packet processing | ,

(~ tens of
nanoseconds)

1001

values in arriving
packet header

[Toml] .
x >< 1

Traditionally:

Individual
routing
algorithm
components in
each and every
router interact in
the control plane

38

Problems with traditional control planes

« Management decisions tied to distributed protocols
« Ex: Set OSPF link weights to force traffic through desired path
* Ex: Non-deterministic network state after a link failure

« Data and control plane controlled by vendors: proprietary interfaces

Traditional IP network

Software-defined network

. loslcally-centralized control plane

A
\
\
\
\
1

Software-Defined Networking

SDN (1/2): Centralized control plane

Control planes lifted from switches
... Into a logically centralized controller
... running in a compute cluster

e to data plane

Open interfac

):

SDN (2/2

Some immediate consequences

(1) Simpler switches

Small set of hardware

Instructions.

Data plane primitive: Match-action rules

« Match arbitrary bits in the packet header
Data Header Match: 1000x01xx01001x

« Match on any header, or new header P
« Match exact, a subset (ternary), or over a range
« Allows any flow granularity

 Actions
* Forward to port(s), drop, send to controller, count,
« Qverwrite header with mask, push or pop, ... Action: fwd(port 2)
* Forward at specific bit-rate

* Prioritized list of rules Priority: 65500

(2) Network programming abstractions

Application Application Application

----------- Write modular apps and compose them ========-=-

(3) Formal verification of Network Policy

Application (specified as code)

Dyvnamic
@' _ Dataplane '

(4) Unified network operating system

Application Application Application

Separate distributed system concerns from expressing intent

Persist app state
Graceful failover
Replication for perf
Consistent view

Technical challenges of SDN

* Availability: surviving failures of the controller & data plane

 Controller scalability: many routers, many events
* Response time: Delays between controller and routers

» Consistency: Ensuring multiple controllers behave consistently
* Designing flexible router mechanisms

« Compilation: translating intent to mechanisms

* Verification: ensuring controller policy is faithfully implemented
 Security: entire network owned if the controller is exploited

* Interoperability: legacy routers? neighboring domains?
» Developing interfaces that are portable across hardware vendors

Virtualizing Networking in a
Shared Cluster

Networking in a multi-tenant cloud

» L2 and L3 networking: basics
* A typical public cloud network topology: Tree upon ToRs

* Problems: Many tenants, time-varying demands.
« Want homogeneity across data center on use of compute capacity
* Where to provision VMs?
* How to migrate VMs or scale the number of VMs?
* I[deas: VMs get their own network addresses
* network address virtualization

* |deas: tenants should be able to use custom topologies
* Needed “in practice” rather than “in principle”. But important to do.

How cloud network looks to tenant

« Control abstraction: pipeline of lookup tables.
« Example: L2, ACL, L2.
« Example: L2, L3, ACL

» Packet abstraction: send to IP addresses of your own

* Processed through switch/router topology
« Data plane behavior defined through control plane configuration

» Design of NVP: (nicira virtualization platform):
 Push all interesting data plane behaviors to the edge (hypervisor, OVS)

« The core of the network (switches/routers) just moves data using tunnel
headers

Datapath design

* (1) Topology virtualization: Implement tenant control plane
policies faithfully

« Compute match-action forwarding rules inside a pipeline of logical data
paths. Plumb them to each other carefully.

* (2) Address virtualization: Get hypervisors to tunnel to each
other based on forwarding outcomes from tenant’s logical data
paths

« Separate protocol to communicate the hypervisor’s provider-address,
hosted VM identifiers, and logical port identifiers for each VM to the
controller

« Eventually send packet to the local virtual NIC of the VM
» Use caching heavily to avoid many table lookups

Controller design

 Declarative design: language to specify tuples of rules/relations
* No need to implement a state machine to transition rule sets
« Use a compiler to emit correct, up to date logical datapaths (tuples)

» Shared-nothing parallelism to scale

» Different logical datapaths easily distributed

« “Template” rules output from logical datapaths may be independently
specialized to specific hypervisors and VMs

 Controller availability maintained using standard leader election
mechanisms

« Control and data paths fail independently
 Existing OVS hypervisor rules can process packets even if controller fails
+ Fast failover through precomputed failover installed in the data path

Making old software use new networks usually means
making new networks behave like old ones.

