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Application architecture

Partition-AggregateMicroservices Data preprocessing (MR)RPCs and MQs
Web servers

Storage (noSQL)



Monoliths
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server
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CGI
Language 

frameworks

Changes 
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Coordination 
overheads

Releases, transient functions, etc.

Scaling, troubleshooting incidents, …



Microservices

HTTP
server

Language 
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How to split?

HTTP
server

App

App

Disparate data 
views

Business Capabilities
Churn Boundaries

Fleeting? 
Who should know (or not)?

Changing together?

Heterogeneity in resource use

Refactoring common functionality



Salient new concerns!

HTTP
server

App

App
Communication

Failures



Communication

App App
Synchronous blocking

(request-response)

Remote Procedure Call (RPC)

Serialization format (e.g., protobufs)
struct customer {

string name;
int customer_id;
..;

}

01101010101…
JSON
XML

struct customer {
string name;
int customer_id;
..;

}

…
Lots of waiting.

Increasing failures.



Communication

App App
Synchronous blocking

(request-response)

Message 
broker

Asynchronous 
request-response

Can do useful 
work while 

waiting (but still 
need timeouts)

Shared data

callback()

Event streaming

“Building microservices”, Sam Newman



Cost of communication: Performance

Profiling a warehouse-scale computer (Google). ISCA’15.



Cost of comm: Hotspot spreading

Deathstarbench. ASPLOS’19.



Cost of comm: high level failure handling

App App
(Soft or hard)

Circuit 
breaker

Connection 
issue

TimeoutTimeout

Timeouttri
pTimeout

Fail immediately



Microservices aren’t always good
• Just a technology. Look at problems first
• Observability
• Deployment automation
• Integration: refactoring service boundaries is hard
• How significant are dev coordination overheads?
• Complexity



Partition-Aggregate
Processing interactive search queries



Web search: some numbers (circa 2003)
• 10s of terabytes of web corpus data

• Read 100s of megabytes per query

• 10s of billions of CPU instructions per query

• Data accessed depends on the query; hard to predict

• Cannot process on a single machine within acceptable time



Quick Review: Compute & Memory Org

Instruction pipeline

L1 I-cache I-TLB

L2 cache

Instruction pipeline

Instruction pipeline

Main memory

L3 cache

L1 D-cache

Compute
(single threaded core)

Memory
hierarchy
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(out of order + 
speculative)

Retire

Registers



Measurements from one (index) server
• Not too fast single-threaded

• Data dependencies
• Branches often mispredicted

• Small instruction memory footprint

• Data locality within a block, but not 
across blocks

• Can’t drive high single threaded 
performance

Web search for a planet, MICRO’03.

Use parallelism



How to use parallelism?
• Few fast cores with 

high-speed 
interconnect 
• Or more slow cores?

• Cost per query 
processed?
• Power efficiency?

Fast core Fast core

Fast core Fast core

Slow 
core

Slow 
core

Slow 
core

Slow 
core

Slow 
core

Slow 
core

Slow 
core

Slow 
core

Slow 
core

Server rack
(hyperthreaded or 
on-chip multicore)



Data parallelism
• Significant parts of computation are 

independent over shards of data
• Fast interconnects not as critical
• Stateless, no coordination within a request

• Different requests are independent
• Use parallelism across requests
• Shard itself can be replicated for throughput

• Need lower latency?
• Compensate slow cores with smaller 

shard (add more shards)
• Turn throughput into latency advantage
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Internet architecture: Review
Routing



Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Application: useful user-level functions

Software/hardware organization at hosts
Communication functions 
broken up and “stacked”

Each layer depends on the 
one below it.

Each layer supports the 
one above it.

The interfaces between 
layers are well-defined and 

standardized.



Routing



Two key network-layer functions

• Forwarding: move packets 
from routerʼs input to 
appropriate router output

• Routing: determine route 
taken by packets from source 
to destination

• routing algorithms

• The network layer solves 
the routing problem.

Analogy: taking a road 
trip

§ Forwarding: process 
of getting through 
single exit

§ Routing: process of 
planning trip from 
source to destination

23
network

layer runs
everywhere



Control/Data Planes
Data plane = Forwarding
• local, per-router function
• determines how datagram 

arriving on router input port is 
forwarded to router output port

Control plane = Routing
• network-wide logic
• determines how datagram is routed 

along end-to-end path from source 
to destination endpoint
• two control-plane approaches:
• Distributed routing algorithm 

running on each router
• Centralized routing algorithm 

running on a (logically) 
centralized machine

0111

values in arriving 
packet header

1

23



Routing
Algorithm

data
plane

control
plane

4.1  •  OVERVIEW OF NETWORK LAYER     309

tables. In this example, a routing algorithm runs in each and every router and both 
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with 
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages 
containing routing information according to a routing protocol! We’ll cover routing 
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can 
be further illustrated by considering the hypothetical (and unrealistic, but technically 
feasible) case of a network in which all forwarding tables are configured directly by 
human network operators physically present at the routers. In this case, no routing 
protocols would be required! Of course, the human operators would need to interact 
with each other to ensure that the forwarding tables were configured in such a way 
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have 
both a forwarding and a routing function!
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Figure 4.2 ♦ Routing algorithms determine values in forward tables
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3

Data plane
per-packet processing
(~ tens of 
nanoseconds)

Control plane
Traditional routing 
protocols: per route-
change processing
(~ a few tens of 
seconds)

Distributed routing



The Internet is a large federated network

AT&T

Comcast

Verizon



The Internet is a large federated network

AT&T

Comcast

Verizon

Several autonomously run organizations (AS’es): No one “boss”
Organizations cooperate, but also compete

e.g., AT&T has little  
commercial interest 
in revealing its 
internal network 
structure to Verizon.



The Internet is a large federated network

AT&T

Comcast

Verizon

Several autonomously run organizations: No one “boss”
Organizations cooperate, but also compete

Message 
exchanges must
not reveal internal  
network details.

Algorithm must work with 
“incomplete” information about 
its neighbors’ internal topology.



The Internet is a large federated network

AT&T

Comcast

Verizon

Internet today: > 70,000 unique autonomous networks
Internet routers: > 800,000 forwarding table entries

Keep messages & 
tables as small as 
possible. Don’t flood

Algorithm must be incremental: 
don’t recompute the whole table 
on every message exchanged.



Inter-domain Routing
• The Internet uses Border Gateway Protocol (BGP)
• All AS’es speak BGP. It is the glue that holds the Internet 

together
• BGP is a path vector protocol

Distance vector 
protocols

Routing protocols

Link state 
protocols

Path vector 
protocols

Messages? Algorithm? Applicable within a 
single AS



(1) BGP Messages
• Routing Announcements or Advertisements

• “I am here” or “I can reach here”
• Occur over a TCP connection (BGP session) between routers

• Route announcement = destination + attributes
• Destination: IP prefix

• Route Attributes:
• AS-level path
• Next hop
• Several others: origin, MED, community, etc.

• An AS promises to use advertised path to reach destination
• Only route changes are advertised after BGP session established

2b

2d

2c2a X

“I am here.”
Dst: 128.1.2.0/24
AS path: X

“I can reach X”
Dst: 128.1.2.0/24
AS path: AS2, X

AS 21b

1d

1c1a

No link metrics, distances! 
Exchange paths: path vector

Loop detection is easy
(no “count to infinity”)



(2) BGP algorithm
• A BGP router does not consider every routing advertisement it 

receives by default to make routing decisions!
• An import policy determines whether a route is even considered a 

candidate
• Once imported, the router performs route selection
• A BGP router does not propagate its chosen path to a 

destination to all other AS’es by default!
• An export policy determines whether a (chosen) path can be advertised 

to other AS’es and routers

Business policy considerations drive BGP. 
NOT efficiency considerations.

Programmed 
by network 
operator



Policy arises from business relationships
• Customer-provider relationships:

• E.g., Rutgers is a customer of AT&T

• Peer-peer relationships:
• E.g., Verizon is a peer of AT&T

• Business relationships depend on where connectivity occurs
• “Where”, also called a “point of presence” (PoP)
• e.g., customers at one PoP but peers at another
• Internet-eXchange Points (IXPs) are large PoPs where ISPs come together 

to connect with each other (often for free)



• A,B,C are provider networks
• X,W,Y are customers (of provider networks)
• X is dual-homed: attached to two networks
• policy to enforce: X does not want to route from B to C via X 

• So, X will not announce to B a route to C

A

B

C

W
X

Y

legend:

customer 
network:

provider
network

BGP Export Policy

Suppose an ISP only wants to route traffic to/from its customer 
networks (does not want to carry transit traffic between other ISPs)



• A announces path Aw to B and to C
• B will not announce BAw to C:  

• B gets no “revenue” for routing CBAw, since none of C, A, w are Bʼs 
customers

• C will route CAw (not using B) to get to w

A
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C

W
X

Y

legend:

customer 
network:
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network

BGP Export Policy

Suppose an ISP only wants to route traffic to/from its customer 
networks (does not want to carry transit traffic between other ISPs)



• Suppose C announces path Cy to x
• Further, y announces a direct path (“y”) to x
• Then x may choose not to import the path Cy to y since it has a 

peer path (“y”) towards y
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Y

legend:
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BGP Import Policy

Suppose an ISP wants to minimize costs by avoiding routing 
through its providers when possible.



• When a router imports more than one route to a 
destination IP prefix, it selects route based on:

1. local preference value attribute (import policy 
decision -- set by network admin)

2. shortest AS-PATH 
3. closest NEXT-HOP router
4. Several additional criteria: You can read up on the 

full, complex, list of criteria, e.g., at 
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-
protocol-bgp/13753-25.html

37

Q2. BGP Route Selection

https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html


Problems with BGP
• Not designed for efficiency

• Only a single path per destination

• Slow to converge after a change

• Vulnerable to bugs & malice

Nothing to do with 
path length, delay, or 

available capacity.

Approaches to bring flexibility:
Flexible control logic for path selection

(Google, Facebook)
Detour/overlay routing (Akamai)


