
Application Architecture
Lecture 4

Srinivas Narayana
http://www.cs.rutgers.edu/~sn624/553-S23

1

http://www.cs.rutgers.edu/~sn624/553-S23

Application architecture

Partition-AggregateMicroservices Data preprocessing (MR)RPCs and MQs
Web servers

Storage (noSQL)

Monoliths

HTTP
server

App

CGI
Language

frameworks

Changes
coupled

Coordination
overheads

Releases, transient functions, etc.

Scaling, troubleshooting incidents, …

Microservices

HTTP
server

Language
of choice

Independently
upgrade and

deploy

App

App

Independent
data models

Must be explicitly
related

Distinct
from a

software
library.
Out of

process.

How to split?

HTTP
server

App

App

Disparate data
views

Business Capabilities
Churn Boundaries

Fleeting?
Who should know (or not)?

Changing together?

Heterogeneity in resource use

Refactoring common functionality

Salient new concerns!

HTTP
server

App

App
Communication

Failures

Communication

App App
Synchronous blocking

(request-response)

Remote Procedure Call (RPC)

Serialization format (e.g., protobufs)
struct customer {

string name;
int customer_id;
..;

}

01101010101…
JSON
XML

struct customer {
string name;
int customer_id;
..;

}

…
Lots of waiting.

Increasing failures.

Communication

App App
Synchronous blocking

(request-response)

Message
broker

Asynchronous
request-response

Can do useful
work while

waiting (but still
need timeouts)

Shared data

callback()

Event streaming

“Building microservices”, Sam Newman

Cost of communication: Performance

Profiling a warehouse-scale computer (Google). ISCA’15.

Cost of comm: Hotspot spreading

Deathstarbench. ASPLOS’19.

Cost of comm: high level failure handling

App App
(Soft or hard)

Circuit
breaker

Connection
issue

TimeoutTimeout

Timeouttri
pTimeout

Fail immediately

Microservices aren’t always good
• Just a technology. Look at problems first
• Observability
• Deployment automation
• Integration: refactoring service boundaries is hard
• How significant are dev coordination overheads?
• Complexity

Partition-Aggregate
Processing interactive search queries

Web search: some numbers (circa 2003)
• 10s of terabytes of web corpus data

• Read 100s of megabytes per query

• 10s of billions of CPU instructions per query

• Data accessed depends on the query; hard to predict

• Cannot process on a single machine within acceptable time

Quick Review: Compute & Memory Org

Instruction pipeline

L1 I-cache I-TLB

L2 cache

Instruction pipeline

Instruction pipeline

Main memory

L3 cache

L1 D-cache

Compute
(single threaded core)

Memory
hierarchy

Sl
ow

er
 b

ut
 la

rg
er

Fetch
(on hit)

Branch predictors
(out of order +
speculative)

Retire

Registers

Measurements from one (index) server
• Not too fast single-threaded

• Data dependencies
• Branches often mispredicted

• Small instruction memory footprint

• Data locality within a block, but not
across blocks

• Can’t drive high single threaded
performance

Web search for a planet, MICRO’03.

Use parallelism

How to use parallelism?
• Few fast cores with

high-speed
interconnect
• Or more slow cores?

• Cost per query
processed?
• Power efficiency?

Fast core Fast core

Fast core Fast core

Slow
core

Slow
core

Slow
core

Slow
core

Slow
core

Slow
core

Slow
core

Slow
core

Slow
core

Server rack
(hyperthreaded or
on-chip multicore)

Data parallelism
• Significant parts of computation are

independent over shards of data
• Fast interconnects not as critical
• Stateless, no coordination within a request

• Different requests are independent
• Use parallelism across requests
• Shard itself can be replicated for throughput

• Need lower latency?
• Compensate slow cores with smaller

shard (add more shards)
• Turn throughput into latency advantage

1 2 3

4 5 6

4 4 4

a
b

a
b

Google search
DNS

GFE

LB
GWS

Index
servers

Doc
servers

Al
l-u

p
SL

O
 (3

00
 m

s)

user

Pick
one

Partition
W

ord à
D

ocAggregate

Partition

Aggregate

(D
oc, w

ord) à
Snippet

Internet architecture: Review
Routing

Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Application: useful user-level functions

Software/hardware organization at hosts
Communication functions
broken up and “stacked”

Each layer depends on the
one below it.

Each layer supports the
one above it.

The interfaces between
layers are well-defined and

standardized.

Routing

Two key network-layer functions

• Forwarding: move packets
from routerʼs input to
appropriate router output

• Routing: determine route
taken by packets from source
to destination

• routing algorithms

• The network layer solves
the routing problem.

Analogy: taking a road
trip

§ Forwarding: process
of getting through
single exit

§ Routing: process of
planning trip from
source to destination

23
network

layer runs
everywhere

Control/Data Planes
Data plane = Forwarding
• local, per-router function
• determines how datagram

arriving on router input port is
forwarded to router output port

Control plane = Routing
• network-wide logic
• determines how datagram is routed

along end-to-end path from source
to destination endpoint
• two control-plane approaches:
• Distributed routing algorithm

running on each router
• Centralized routing algorithm

running on a (logically)
centralized machine

0111

values in arriving
packet header

1

23

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header, i.e, destination
IP address

3

Data plane
per-packet processing
(~ tens of
nanoseconds)

Control plane
Traditional routing
protocols: per route-
change processing
(~ a few tens of
seconds)

Distributed routing

The Internet is a large federated network

AT&T

Comcast

Verizon

The Internet is a large federated network

AT&T

Comcast

Verizon

Several autonomously run organizations (AS’es): No one “boss”
Organizations cooperate, but also compete

e.g., AT&T has little
commercial interest
in revealing its
internal network
structure to Verizon.

The Internet is a large federated network

AT&T

Comcast

Verizon

Several autonomously run organizations: No one “boss”
Organizations cooperate, but also compete

Message
exchanges must
not reveal internal
network details.

Algorithm must work with
“incomplete” information about
its neighbors’ internal topology.

The Internet is a large federated network

AT&T

Comcast

Verizon

Internet today: > 70,000 unique autonomous networks
Internet routers: > 800,000 forwarding table entries

Keep messages &
tables as small as
possible. Don’t flood

Algorithm must be incremental:
don’t recompute the whole table
on every message exchanged.

Inter-domain Routing
• The Internet uses Border Gateway Protocol (BGP)
• All AS’es speak BGP. It is the glue that holds the Internet

together
• BGP is a path vector protocol

Distance vector
protocols

Routing protocols

Link state
protocols

Path vector
protocols

Messages? Algorithm? Applicable within a
single AS

(1) BGP Messages
• Routing Announcements or Advertisements

• “I am here” or “I can reach here”
• Occur over a TCP connection (BGP session) between routers

• Route announcement = destination + attributes
• Destination: IP prefix

• Route Attributes:
• AS-level path
• Next hop
• Several others: origin, MED, community, etc.

• An AS promises to use advertised path to reach destination
• Only route changes are advertised after BGP session established

2b

2d

2c2a X

“I am here.”
Dst: 128.1.2.0/24
AS path: X

“I can reach X”
Dst: 128.1.2.0/24
AS path: AS2, X

AS 21b

1d

1c1a

No link metrics, distances!
Exchange paths: path vector

Loop detection is easy
(no “count to infinity”)

(2) BGP algorithm
• A BGP router does not consider every routing advertisement it

receives by default to make routing decisions!
• An import policy determines whether a route is even considered a

candidate
• Once imported, the router performs route selection
• A BGP router does not propagate its chosen path to a

destination to all other AS’es by default!
• An export policy determines whether a (chosen) path can be advertised

to other AS’es and routers

Business policy considerations drive BGP.
NOT efficiency considerations.

Programmed
by network
operator

Policy arises from business relationships
• Customer-provider relationships:

• E.g., Rutgers is a customer of AT&T

• Peer-peer relationships:
• E.g., Verizon is a peer of AT&T

• Business relationships depend on where connectivity occurs
• “Where”, also called a “point of presence” (PoP)
• e.g., customers at one PoP but peers at another
• Internet-eXchange Points (IXPs) are large PoPs where ISPs come together

to connect with each other (often for free)

• A,B,C are provider networks
• X,W,Y are customers (of provider networks)
• X is dual-homed: attached to two networks
• policy to enforce: X does not want to route from B to C via X

• So, X will not announce to B a route to C

A

B

C

W
X

Y

legend:

customer
network:

provider
network

BGP Export Policy

Suppose an ISP only wants to route traffic to/from its customer
networks (does not want to carry transit traffic between other ISPs)

• A announces path Aw to B and to C
• B will not announce BAw to C:

• B gets no “revenue” for routing CBAw, since none of C, A, w are Bʼs
customers

• C will route CAw (not using B) to get to w

A

B

C

W
X

Y

legend:

customer
network:

provider
network

BGP Export Policy

Suppose an ISP only wants to route traffic to/from its customer
networks (does not want to carry transit traffic between other ISPs)

• Suppose C announces path Cy to x
• Further, y announces a direct path (“y”) to x
• Then x may choose not to import the path Cy to y since it has a

peer path (“y”) towards y

A

B

C

W
X

Y

legend:

customer
network:

provider
network

BGP Import Policy

Suppose an ISP wants to minimize costs by avoiding routing
through its providers when possible.

• When a router imports more than one route to a
destination IP prefix, it selects route based on:

1. local preference value attribute (import policy
decision -- set by network admin)

2. shortest AS-PATH
3. closest NEXT-HOP router
4. Several additional criteria: You can read up on the

full, complex, list of criteria, e.g., at
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-
protocol-bgp/13753-25.html

37

Q2. BGP Route Selection

https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html

Problems with BGP
• Not designed for efficiency

• Only a single path per destination

• Slow to converge after a change

• Vulnerable to bugs & malice

Nothing to do with
path length, delay, or

available capacity.

Approaches to bring flexibility:
Flexible control logic for path selection

(Google, Facebook)
Detour/overlay routing (Akamai)

