
Internet Architecture
A review
Lecture 3

Srinivas Narayana
http://www.cs.rutgers.edu/~sn624/553-S23

1

http://www.cs.rutgers.edu/~sn624/553-S23


Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Application: useful user-level functions

Software/hardware organization at hosts
Communication functions 
broken up and “stacked”

Each layer depends on the 
one below it.

Each layer supports the 
one above it.

The interfaces between 
layers are well-defined and 

standardized.



Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Application: useful user-level functions

Software/hardware organization at hosts

Demultiplexing

Reliability

Congestion control



(3) How much data to keep in flight?

• Avoid overwhelming network resources: Congestion control
• Internet: every endpoint makes its own decisions!

• Distributed algorithm: no central authority
• Goal 1: efficiency (use available capacity)
• Goal 2: fairness (distribute capacity equitably)

H C

Feedback Control



Finding the right congestion window
• There is an unknown bottleneck link rate that the sender must 

match

• If sender sends more than the bottleneck link rate:
• packet loss, delays, etc.

• If sender sends less than the bottleneck link rate:
• all packets get through; successful ACKs

• Congestion window (cwnd): amount of data in flight



Quickly finding a rate: TCP slow start
• Initially cwnd = 1 MSS

• MSS is “maximum segment size”

• Upon receiving an ACK of each MSS, 
increase the cwnd by 1 MSS

• Effectively, double cwnd every RTT

§ Initial rate is slow but ramps up 
exponentially fast

§ On loss (RTO), restart from cwnd := 1 
MSS

Host A

one segment

R
TT

Host B

time

two segments

four segments

PayloadTNL

MSS



Behavior of slow start

1 MSS

Congestion 
Window

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt

Slow
 sta

rt



Slow start has problems
• Congestion window increases too rapidly

• Example: suppose the “right” window size cwnd is 17
• cwnd would go from 16 to 32 and then dropping down to 1
• Result: massive packet drops

• Congestion window decreases too rapidly
• Suppose the right cwnd is 31, and there is a loss when cwnd is 32
• Slow start will resume all the way back from cwnd 1
• Result: unnecessarily low speed of sending data

• Instead, perform finer adjustments of cwnd: congestion avoidance



TCP New Reno: Additive Increase
• Remember the recent past to find a 

good estimate of link rate
• The last good cwnd without packet 

drop is a good indicator
• TCP New Reno calls this the slow start 

threshold (ssthresh)

• Increase cwnd by 1 MSS every RTT 
after cwnd hits ssthresh

• Effect: increase window additively per 
RTT

Host A

R
TT

Host B

time

four segments

five segments

six segments

R
TT

say ssthresh=4

seven segments…

R
TT



TCP New Reno: Additive increase
• Start with ssthresh = 64K bytes (TCP default)
• Do slow start until ssthresh
• Once the threshold is passed, do additive increase

• Add one MSS to cwnd for each cwnd worth data ACK’ed
• For each MSS ACK’ed, cwnd = cwnd + (MSS * MSS) / cwnd

• Upon a TCP timeout (RTO),
• Set cwnd = 1 MSS
• Set ssthresh = max(2 * MSS, 0.5 * cwnd)
• i.e., the next linear increase will start at half the current cwnd



Behavior of Additive Increase

1K

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt
Congestion 

Window

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

54 MSS

Set ssthresh to
27 MSS

Loss occurs at 
cwnd = 40K

Loss occurs at 
cwnd = 54K

Set ssthresh to
20 MSS

Additive 

increase

Slow
 

sta
rt

Additive 

increase

AI is slow.
Persistent connections
Large window sizes
Different laws to evolve 
congestion window



Routing



Googlegoogle.com

Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications
Socket

User

Kernel

Demultiplexing
Reliability

Congestion control



Two key network-layer functions

• Forwarding: move packets 
from routerʼs input to 
appropriate router output

• Routing: determine route 
taken by packets from source 
to destination

• routing algorithms

• The network layer solves 
the routing problem.

Analogy: taking a road 
trip

§ Forwarding: process 
of getting through 
single exit

§ Routing: process of 
planning trip from 
source to destination

14
network

layer runs
everywhere



Control/Data Planes
Data plane = Forwarding
• local, per-router function
• determines how datagram 

arriving on router input port is 
forwarded to router output port

Control plane = Routing
• network-wide logic
• determines how datagram is routed 

along end-to-end path from source 
to destination endpoint
• two control-plane approaches:
• Distributed routing algorithm 

running on each router
• Centralized routing algorithm 

running on a (logically) 
centralized machine

0111

values in arriving 
packet header

1

23



Application architecture
Web servers



Components of an Internet Service

Endpoints

Routers

Data Center

Servers
Modularized applications

Storage Interconnect: Routers

App compute and 
communication patterns



Web server
Often the first app point where a user request lands

bind(IPaddrB, portB)

listen()

accept()

recv()/send()/..

IPB + portBprocess

socket

Parse HTTP request

(many other headers!)

Find a file, run a script, …

Send response header
HTTP/1.1 200 OK
Content-Type: text/html

Read file, send() data



Overloaded with functionality
Often the first app point where a user request lands

bind(IPaddrB, portB)

listen()

accept()

recv()/send()/..

IPB + portBprocess

socket

Find a file, run a script, …

Scripting: Python/PHP/nodejs fastCGI

Reverse proxy 

Caching

TLS
Compression Access control

Media streaming Image filtering



How does one design a web server?
• Process connections one at a time?

bind(IPaddrB, portB)

listen()

accept()

recv()/send()/..

IPB + portBprocess

socket

accept()

listen() send/recv()

close()

listen()

Powerful server doing nothing 
most of the time

Many other requests waiting in 
the meanwhile



How does one design a web server?
• Process other requests while waiting for one to finish

bind(IPaddrB, portB)

listen()

accept()

recv()/send()/..

IPB + portBprocess

socket



Parallelism
• Process other requests while waiting for one to finish
• A first design: multiprocessing/threading

bind(IPaddrB, portB)

listen()

accept()
fork()
recv()/send()/..

IPB + portBprocess

socket
accept()

listen()
listen() send()

recv()

accept()

listen() send()
recv()

send()
recv()

Great to avoid blocking (disk 
I/O, fastCGI, …) Overhead grows with # connections

more
longer lived



Concurrency
• Process other requests while waiting for one to finish
• A better design: event driven

bind(IPaddrB, portB)

listen()

accept()

recv()/send()/..

IPB + portBprocess

socket

accept()

Lightweight

recv()

A queue of events

Can block if any of 
the requests block

State of the art designs combine 
parallelism (multiprocess/thread) 
with concurrency (event-driven)

epoll, select, kqueue, etc.


