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Outline
• Name resolution
• The HTTP protocol
• Socket abstraction
• Underlying transport concerns: reliability, basic congestion 

control
• Internet routing: IP address organization, BGP, and concerns
• CDN reading : Tom Leighton, Akamai full detailed study
• Relevant points from Google, FB, Microsoft edge and peering 

papers
• HTTP/TCP interaction?



Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Application: useful user-level functions

Software/hardware organization at hosts
Communication functions 
broken up and “stacked”

Each layer depends on the 
one below it.

Each layer supports the 
one above it.

The interfaces between 
layers are well-defined and 

standardized.



Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications

The Internet

Packet takes on 
headers (metadata) 

at each layer

Packet starts as an 
app “payload” 



Name Resolution



Googlegoogle.com

Machines communicate using IP addresses and ports
IP addresses: ~12 digits (IPv4) or more
Ports: fixed based on application (e.g., 80: web)

Need a way to turn human-readable 
addresses into Internet addresses.

Ask someone Ask everyone Tell everyone
Directory service Query broadcast Information flooding
Asking “someone” could involve asking many machines… 



• Key idea: Implement a server that looks up a table.
• Will this scale?

• Every new (changed) host needs to be (re)entered in this table
• Performance: can the server serve billions of Internet users?
• Failure: what if the server or the database crashes?
• Security: What if someone “takes over” this server?
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DOMAIN NAME IP ADDRESS
spotify.com 98.138.253.109

cs.rutgers.edu 128.6.4.2

www.google.com 74.125.225.243

www.princeton.edu 128.112.132.86

QUERY cs.rutgers.edu

RESPONSE 128.6.4.2

<Client IP, CPort, DNS server IP, 53> 

<DNS server, 53, Client IP, Cport> 

Domain Name Service
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Root DNS Servers

com DNS servers org DNS servers edu DNS servers

rutgers.edu
DNS servers

umass.edu
DNS serversgoogle.com

DNS servers
amazon.com
DNS servers

wnyc.org
DNS servers

cs.rutgers.edu 
DNS server

RFC 1034

Distributed and hierarchical database
Top-level domain 
(TLD) servers

Authoritative name 
server

Hierarchy Replication Indirection



requesting host
cs.rutgers.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.rutgers.edu

1

2
3

4

5

6

umass.edu DNS server
dns.umass.edu

78

.edu DNS server• Host at cs.rutgers.edu wants IP 
address for gaia.cs.umass.edu

• Local DNS server
• Root DNS server
• TLD DNS server
• Authoritative DNS server

DNS name resolution



requesting host
cs.rutgers.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.rutgers.edu

1

2
3

4

5

6

umass.edu DNS server
dns.umass.edu

78

.edu DNS server• Once (any) name server learns a 
name to IP address mapping, it 
caches the mapping
• Cache entries timeout (disappear) 

after some time
• TLD servers typically cached in local 

name servers
• In practice, root name servers aren’t 

visited often!
• Caching is pervasive in DNS

DNS caching



Example DNS interactions
• dig <domain-name>
• dig +trace <domain-name>
• dig @<dns-server> <domain-name>



Googlegoogle.com

The web is a specific application protocol running over a 
network: HyperText Transfer Protocol (HTTP)

Objects

Each object addressable by a name (URL)
Named objects can be static 
(image, video)
… or the result of a 
dynamic app process



Web interactions
Hostname IP address

Google.com 10.0.1.2Host name

Server IP Address

DNS server

clientIP, clientPort, server IP Address, 80

HTTP messages

(HTTP application 
typically 
associated with 
port 80)HTTP request

HTTP response

I want to 
browse 

google.com



Example HTTP interactions
• wget google.com (or) curl google.com

• telnet example.com 80
• GET / HTTP/1.1
• Host: example.com

(followed by two enter’s)

• Exercise: try 
• telnet google.com 80
• telnet web.mit.edu 80
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client server
http request msg + auth

http response +
Set-cookie: 1678 

http request (no auth)
cookie: 1678

Personalized http 
response

http request (no auth)
cookie: 1678

Personalized http 
response

cookie-
specific
action

cookie-
specific
action

server
creates ID

1678 for user

entry in backend 

database

access

ac
ce

ss

Cookie file

Amazon: 1678

Cookie file

Amazon: 1678

Cookie file

Amazon: 1678

one week later:

Remembering users: cookies

Netflix: 436

Netflix: 436

Netflix: 436

Cookie 
is 

typically 
opaque 

to client.
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Improving performance: Web caching

GET foo.html

Web Server 
(also called 
origin server in 
this context)

Clients

Web 
cache

GET foo.html

Store foo.html
on receiving 

response

• Network administrators (e.g., 
Rutgers) may run web caches 
to remember popular web 
objects 

• Hit: cache returns object 
• Miss: obtain object from 

originating web server (origin 
server) and return to client
• Also cache the object locally

• Reduce response time
• Reduce traffic requirements 

(and $$) on an organization’s 
network connections

The Internet

Retu
rn 

ca
ch

ed
 ob

jec
t!

R
ut
ge
rs



Not all content is effectively cacheable
• Personalized content

• Interactive processing 
• e.g., forms, shopping carts, ajax, etc.

• Long tail of (obscure) content
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A global network of web caches
• Provisioned by ISPs and network operators
• Or content providers, like Netflix, Google, etc.

Uses
• Reduce traffic on a network’s Internet connection, e.g., 

Rutgers
• Improve response time for users: CDN nodes are closer to 

users than origin servers (servers holding original content)
• Reduce bandwidth requirements on content provider
• Reduce $$ to maintain origin servers

Content Distribution Networks (CDNs)



Without CDN

• Problems:
• Huge bandwidth requirements for Rutgers
• Large propagation delays to reach users

19

128.6.4.2

DOMAIN NAME IP ADDRESS
www.yahoo.com 98.138.253.109

cs.rutgers.edu 128.6.4.2

www.google.com 74.125.225.243

www.princeton.edu 128.112.132.86

Cluster of Rutgers CS origin 
servers (located in NJ, USA)

DNS

Clients 
distributed 
all over the 
world



Where the CDN comes in
• Distribute content of the origin server over geographically 

distributed CDN servers

• But how will users get to these CDN servers?

• Use DNS!
• DNS provides an additional layer of indirection
• Instead of returning IP address, return another DNS server (NS record)
• The second DNS server (run by the CDN) returns IP address to client

• The CDN runs its own DNS servers (CDN name servers)
• Custom logic to send users to the “closest” CDN web server



128.6.4.2

DOMAIN NAME IP ADDRESS
www.yahoo.com 98.138.253.109

cs.rutgers.edu 124.8.9.8 (NS record pointing 
to CDN name server)

www.google.com 74.125.225.243

DOMAIN NAME IP ADDRESS
Cs.Rutgers.edu 12.1.2.3

Cs.Rutgers.edu 12.1.2.4

Cs.Rutgers.edu 12.1.2.5

Cs.Rutgers.edu 12.1.2.6

CDN Name Server (124.8.9.8)

12.1.2.3 12.1.2.4

12.1.2.512.1.2.6

Origin server

Client

CDN servers

With CDN
Custom 
logic to 
map ONE 
domain 
name to 
one of 
many IP 
addresses!

NS record delegates the 
choice of IP address to 
the CDN name server.

Most requests go to CDN servers (caches).
CDN servers may request object from origin
Few client requests go directly to origin server

DNS 
rep

ly
Popular 
CDNs:
CloudFlare
Akamai
Level3
…



Seeing a CDN in action
• dig web.mit.edu (or) dig +trace web.mit.edu

• telnet web.mit.edu 80



Application-OS interface



Googlegoogle.com

Link layer

Network

Transport

Applications

Link layer

Network

Transport

ApplicationsUser

Kernel
Socket

Example: connected 
socket (TCP)



Googlegoogle.com

connect(   

IPB, portB)

send()

bind(IPaddrB, portB)

listen()

accept()

recv()

process

socket

process

socketIPA + portA
IPB + portB



Googlegoogle.com

connect(   

IPB, portB)

send()

bind(IPaddrB, portB)

listen()

accept()

recv()



Googlegoogle.com

Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications
Socket

User

Kernel



Transport



(1) (De)multiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Src IP, Dst IP, 
Tp Protocol

Src port, Dst port

Connection lookup: The 
operating system does 
a lookup using these 
data to determine the 
right socket and app.

Denotes an 
attachment point 
with the network.

Each IP address 
comes with a full 
copy of its own 
ports.

UDP or TCP listening: 
(dst IP, dst port, TCP)

TCP established: 
(dst IP, dst port, src IP, src port, TCP)



TCP sockets of different types
Listening (bound but  
unconnected)

# On server side

ls = socket(AF_INET, SOCK_STREAM)
ls.bind(serv_ip, serv_port)

ls.listen() # no accept() yet

Connected (Established)

# On server side

cs, addr = ls.accept()

# On client side

connect(serv_ip, serv_port)

(src IP,  dst IP, src port, dst port)
è

Socket (cs NOT ls)

(dst IP, dst port)
è

Socket (ss)

accept()
creates a new 
socket with the
4-tuple 
(established) 
mapping

Enables new connections to be 
demultiplexed correctly Enables established connections to be demultiplexed correctly



(2) Reliability: Stop and Wait. 3 Ideas
• ACKs: Sender sends a single packet, 

then waits for an ACK to know the 
packet was successfully received. Then 
the sender transmits the next packet.

• RTO: If ACK is not received until a 
timeout, sender retransmits the packet

• Seq: Disambiguate duplicate vs. fresh 
packets using sequence numbers that 
change on “adjacent” packets

Sender Receiver

RTT

RTO

SEQ 0

ACK 0

SEQ 1

Retransmit



Sending one packet per RTT makes the data 
transfer rate limited by the time between the 
endpoints, rather than the bandwidth.

Ensure you got the (one) 
box safely; make N trips
Ensure you get N boxes 
safely; make just 1 trip! Keep many packets in flight



Pipelined reliability
• Data in flight: data that has been sent, but sender hasn’t yet 

received ACKs from the receiver
• Note: can refer to packets in flight or bytes in flight

• New packets sent at the same time as older ones still in flight
• New packets sent at the same time as ACKs are returning
• More data moving in same time!
• Improves throughput

• Rate of data transfer



(3) How much data to keep in flight?

• Avoid overwhelming network resources: Congestion control
• Internet: every endpoint makes its own decisions!

• Distributed algorithm: no central authority
• Goal 1: efficiency (use available capacity)
• Goal 2: fairness (distribute capacity equitably)

H C

Feedback Control



Finding the right congestion window
• There is an unknown bottleneck link rate that the sender must 

match

• If sender sends more than the bottleneck link rate:
• packet loss, delays, etc.

• If sender sends less than the bottleneck link rate:
• all packets get through; successful ACKs

• Congestion window (cwnd): amount of data in flight



Quickly finding a rate: TCP slow start
• Initially cwnd = 1 MSS

• MSS is “maximum segment size”

• Upon receiving an ACK of each MSS, 
increase the cwnd by 1 MSS

• Effectively, double cwnd every RTT

§ Initial rate is slow but ramps up 
exponentially fast

§ On loss (RTO), restart from cwnd := 1 
MSS

Host A

one segment

R
TT

Host B

time

two segments

four segments

PayloadTNL

MSS



Behavior of slow start

1 MSS

Congestion 
Window

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt

Slow
 sta

rt



Slow start has problems
• Congestion window increases too rapidly

• Example: suppose the “right” window size cwnd is 17
• cwnd would go from 16 to 32 and then dropping down to 1
• Result: massive packet drops

• Congestion window decreases too rapidly
• Suppose the right cwnd is 31, and there is a loss when cwnd is 32
• Slow start will resume all the way back from cwnd 1
• Result: unnecessarily low speed of sending data

• Instead, perform finer adjustments of cwnd: congestion avoidance



TCP New Reno: Additive Increase
• Remember the recent past to find a 

good estimate of link rate
• The last good cwnd without packet 

drop is a good indicator
• TCP New Reno calls this the slow start 

threshold (ssthresh)

• Increase cwnd by 1 MSS every RTT 
after cwnd hits ssthresh

• Effect: increase window additively per 
RTT

Host A

R
TT

Host B

time

four segments

five segments

six segments

R
TT

say ssthresh=4

seven segments…

R
TT



TCP New Reno: Additive increase
• Start with ssthresh = 64K bytes (TCP default)
• Do slow start until ssthresh
• Once the threshold is passed, do additive increase

• Add one MSS to cwnd for each cwnd worth data ACK’ed
• For each MSS ACK’ed, cwnd = cwnd + (MSS * MSS) / cwnd

• Upon a TCP timeout (RTO),
• Set cwnd = 1 MSS
• Set ssthresh = max(2 * MSS, 0.5 * cwnd)
• i.e., the next linear increase will start at half the current cwnd



Behavior of Additive Increase

1K

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt
Congestion 

Window

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

54 MSS

Set ssthresh to
27 MSS

Loss occurs at 
cwnd = 40K

Loss occurs at 
cwnd = 54K

Set ssthresh to
20 MSS

Additive 

increase

Slow
 

sta
rt

Additive 

increase



Routing



Googlegoogle.com

Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications
Socket

User

Kernel

Demultiplexing
Reliability

Congestion control



Two key network-layer functions

• Forwarding: move packets 
from routerʼs input to 
appropriate router output

• Routing: determine route 
taken by packets from source 
to destination

• routing algorithms

• The network layer solves 
the routing problem.

Analogy: taking a road 
trip

§ Forwarding: process 
of getting through 
single exit

§ Routing: process of 
planning trip from 
source to destination

44
network

layer runs
everywhere



Control/Data Planes
Data plane = Forwarding
• local, per-router function
• determines how datagram 

arriving on router input port is 
forwarded to router output port

Control plane = Routing
• network-wide logic
• determines how datagram is routed 

along end-to-end path from source 
to destination endpoint
• two control-plane approaches:
• Distributed routing algorithm 

running on each router
• Centralized routing algorithm 

running on a (logically) 
centralized machine

0111

values in arriving 
packet header

1

23



Routing
Algorithm

data
plane

control
plane

4.1  •  OVERVIEW OF NETWORK LAYER     309

tables. In this example, a routing algorithm runs in each and every router and both 
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with 
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages 
containing routing information according to a routing protocol! We’ll cover routing 
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can 
be further illustrated by considering the hypothetical (and unrealistic, but technically 
feasible) case of a network in which all forwarding tables are configured directly by 
human network operators physically present at the routers. In this case, no routing 
protocols would be required! Of course, the human operators would need to interact 
with each other to ensure that the forwarding tables were configured in such a way 
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have 
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd   309 11/02/16   3:14 PM

1

2

0111

values in arriving 
packet header, i.e, destination 
IP address

3

Data plane
per-packet processing
(~ tens of 
nanoseconds)

Control plane
Traditional routing 
protocols: per route-
change processing
(~ a few tens of 
seconds)

Distributed routing



The Internet is a large federated network

AT&T

Comcast

Verizon



The Internet is a large federated network

AT&T

Comcast

Verizon

Several autonomously run organizations (AS’es): No one “boss”
Organizations cooperate, but also compete

e.g., AT&T has little  
commercial interest 
in revealing its 
internal network 
structure to Verizon.



The Internet is a large federated network

AT&T

Comcast

Verizon

Several autonomously run organizations: No one “boss”
Organizations cooperate, but also compete

Message 
exchanges must
not reveal internal  
network details.

Algorithm must work with 
“incomplete” information about 
its neighbors’ internal topology.



The Internet is a large federated network

AT&T

Comcast

Verizon

Internet today: > 70,000 unique autonomous networks
Internet routers: > 800,000 forwarding table entries

Keep messages & 
tables as small as 
possible. Don’t flood

Algorithm must be incremental: 
don’t recompute the whole table 
on every message exchanged.



Inter-domain Routing
• The Internet uses Border Gateway Protocol (BGP)
• All AS’es speak BGP. It is the glue that holds the Internet 

together
• BGP is a path vector protocol

Distance vector 
protocols

Routing protocols

Link state 
protocols

Path vector 
protocols

Messages? Algorithm? Applicable within a 
single AS



(1) BGP Messages
• Routing Announcements or Advertisements

• “I am here” or “I can reach here”
• Occur over a TCP connection (BGP session) between routers

• Route announcement = destination + attributes
• Destination: IP prefix

• Route Attributes:
• AS-level path
• Next hop
• Several others: origin, MED, community, etc.

• An AS promises to use advertised path to reach destination
• Only route changes are advertised after BGP session established

2b

2d

2c2a X

“I am here.”
Dst: 128.1.2.0/24
AS path: X

“I can reach X”
Dst: 128.1.2.0/24
AS path: AS2, X

AS 21b

1d

1c1a

No link metrics, distances! 
Exchange paths: path vector

Loop detection is easy
(no “count to infinity”)



(2) BGP algorithm
• A BGP router does not consider every routing advertisement it 

receives by default to make routing decisions!
• An import policy determines whether a route is even considered a 

candidate
• Once imported, the router performs route selection
• A BGP router does not propagate its chosen path to a 

destination to all other AS’es by default!
• An export policy determines whether a (chosen) path can be advertised 

to other AS’es and routers

Business policy considerations drive BGP. 
NOT efficiency considerations.

Programmed 
by network 
operator



Policy arises from business relationships
• Customer-provider relationships:

• E.g., Rutgers is a customer of AT&T

• Peer-peer relationships:
• E.g., Verizon is a peer of AT&T

• Business relationships depend on where connectivity occurs
• “Where”, also called a “point of presence” (PoP)
• e.g., customers at one PoP but peers at another
• Internet-eXchange Points (IXPs) are large PoPs where ISPs come together 

to connect with each other (often for free)



• A,B,C are provider networks
• X,W,Y are customers (of provider networks)
• X is dual-homed: attached to two networks
• policy to enforce: X does not want to route from B to C via X 

• So, X will not announce to B a route to C

A

B

C

W
X

Y

legend:

customer 
network:

provider
network

BGP Export Policy

Suppose an ISP only wants to route traffic to/from its customer 
networks (does not want to carry transit traffic between other ISPs)



• A announces path Aw to B and to C
• B will not announce BAw to C:  

• B gets no “revenue” for routing CBAw, since none of C, A, w are Bʼs 
customers

• C will route CAw (not using B) to get to w

A

B

C

W
X

Y

legend:

customer 
network:

provider
network

BGP Export Policy

Suppose an ISP only wants to route traffic to/from its customer 
networks (does not want to carry transit traffic between other ISPs)



• Suppose C announces path Cy to x
• Further, y announces a direct path (“y”) to x
• Then x may choose not to import the path Cy to y since it has a 

peer path (“y”) towards y

A

B

C

W
X

Y

legend:

customer 
network:

provider
network

BGP Import Policy

Suppose an ISP wants to minimize costs by avoiding routing 
through its providers when possible.



• When a router imports more than one route to a 
destination IP prefix, it selects route based on:

1. local preference value attribute (import policy 
decision -- set by network admin)

2. shortest AS-PATH 
3. closest NEXT-HOP router
4. Several additional criteria: You can read up on the 

full, complex, list of criteria, e.g., at 
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-
protocol-bgp/13753-25.html

58

Q2. BGP Route Selection

https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html


Problems with BGP
• Not designed for efficiency

• Only a single path per destination

• Slow to converge after a change

• Vulnerable to bugs & malice

Nothing to do with 
path length, delay, or 

available capacity.


