
Internet Services

Internet and Web Architecture
Lecture 1

Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/553-S23

2

http://www.cs.rutgers.edu/~sn624/553-S23

Our life on the Internet

Internet users are everywhere

Source: Mary Meekers, 2019 Internet trends

1992 1996 2000 2004 2008
ftp
Web
email

chat
Games
IM
Yahoo!

news
Blog
Search

Music
itunes
Games
search

Wikipedia
Craiglist
Youtube

2010-2020

5

Evolution of Internet services

Text-heavy
Multimodal media
User-generated
content

Augment physical world

2020--

Replace phy world

Pandemic shifts: how we worked

Data shows number of daily sessions in
the US over a period in 2020. Source:
nytimes

… and played

Data shows number of daily sessions in the US over a period in
2020. Source: nytimes

Internet Services

Understand how modern Internet services designed

Learn fundamental concepts in application, system,
and network design that make them possible

Practice your knowledge

What is an Internet service
made of?
Applications, Endpoints, and interconnecting Network

Components of an Internet Service

Endpoints

Routers

Components of an Internet Service

Endpoints

Routers

Data Center

Components of an Internet Service

Endpoints

Routers

Data Center

Components of an Internet Service

Endpoints

Routers

Data Center

Server

Components of an Internet Service

Endpoints

Routers

Data Center

Servers
Modularized applications

Storage Interconnect: Routers

App compute and
communication patterns

Components of an Internet Service

Endpoints

Routers

Data CenterApp
Container

Virtual Machine
OS & Net Stack

Policies Performance
Monitoring

Availability

Components of an Internet Service

Endpoints

Routers

Data Center

Name resolution
Content delivery

AT&T

Verizon
Comcast

Internet Routing

Core technical disciplines (incomplete)

Computer
Networks

Operating
Systems

Distributed
Systems

*security
*algorithms
*prog languages

Internet Services

Why should you study Internet services?
• Intellectual merits

• Interdisciplinary problems, many principles
• Real world utility

• Low barriers: anyone can do something useful
• Pragmatic

• Many job opportunities, timely (stagnation of compute speed)
• Distinct from other coursework at Rutgers

• OS, distributed systems, databases, networks

Course Content Overview

(1) Internet and Web Architecture

Content delivery

App
Transport
Network

Protocols

(2) Application architecture

Partition-Aggregate

Microservices Data processing
(noSQL, MR)

RPCs and MQs

(3) System and Infrastructure support

App
Container

Virtual Machine
OS & Net Stack

Containerization
Orchestration

Public Cloud

Virtual
switching

SDN,
Service mesh

Efficient pkt processing

(4) Networking

App
Transport
Network

Data center transport
Interconnect

(5) Ops: Availability, Perf, Monitoring

Load balancing
Fault tolerance, coordination services
Monitoring

Tracing
In-band network telemetry
Network stack monitoring

Course Logistics

25

About me

• Faculty Instructor: Srinivas Narayana
• http://www.cs.rutgers.edu/~sn624
• sn624@rutgers.edu
• Office hours (student support hours) on Zoom: Mon 10 – 11

am ET and by appointment
• Lecture Wed 8:30 – 11:30 in Busch SEC 118

•Canvas and Piazza
•Class info: http://www.cs.rutgers.edu/~sn624/553-S23/
• Slides will be posted there

http://www.cs.rutgers.edu/~sn624
mailto:sn624@rutgers.edu
http://www.cs.rutgers.edu/~sn624/553-S23/

Class philosophy
• We want you to learn and to be successful

• Significant technical reading & programming
• Build necessary skills for future tech careers (industry or academic)

• Be proactive: interact, ask, support
• Attend lectures and office hours regularly to discuss material
• Use Piazza

• Happy to help develop necessary background
• Ask me for support materials

Course grade components
• Online quizzes (~20%)

• Programming homeworks (30%)

• Course project (~40%)

• Class participation (10%)

• Absolute grading; no curve

Online quizzes (~20%)
• Handed in on Canvas every Tuesday and Friday

• Answer questions on the lecture and assigned reading
• Requires significant engagement with the technical readings
• ~5 hours per reading

• One hour to complete a quiz once you start

• Due by 8 pm on the assigned date

• Only consider the ~20 highest grades (drop lowest ~5)

Online quizzes (~20%)
• Welcome to discuss readings and lectures with me and your

peers

• However, quiz must be taken alone
• Don’t reveal quiz questions or answers to other students

• No collaboration, googling, or generative AI (chatGPT)

• However, you can consult the lecture and the technical paper
while taking the quiz

• Open book but not “open Internet”

You’ll spend significant time reading
• This course has 2 assigned technical readings per week

• Technical blog posts, accessible survey articles, deep technical papers

• Knowing how to read well technically is worth your time
• Grad students: reading and writing technical papers
• Developers: reading RFCs, protocol specifications, other technical specs
• Development: implementing new system technology requires reading

• Staying broadly technically educated (and employable!)

• It’s worth reflecting on how to read effectively

There is no magic
• Reading effectively takes a lot of time and effort

• I’ve been reading technical articles for 12+ years now
• And I still sometimes spend 5+ hours or even an entire day

• You will get more effective and better over time

• A few tricks

(1) Three pass approach for papers
• First pass: title, category, context, assumptions, correctness,

contribution

• Second pass: get into the technical ideas, figures and graphs.
Explain the new technical idea or design to someone else

• Third pass: starting from assumptions and problem statement,
reconstruct solution on your own with proof or argument for why
it works and why it is the right approach (other approaches?)

How to read a paper? -- Keshav Srinivasan

(2) Look for concrete, simple examples
• Good articles often use good examples to explain their ideas

• If the article does not show examples, construct and work
through your own

• Constructing a good example itself often clarifies the technical
problems and innovations in the solution

(3) Identify reusable principles
• What do you want to take away from the reading?

• System design or algorithmic techniques
• Existence of a new problem space
• A class of technical solution approaches
• New techniques for empirical evaluation or measurement

• Reading something worthy changes how you think about the
world from that point

Programming homeworks (30%)
• Four over the first half of semester, by yourself

• Tentatively due 2/06, 2/20, 3/06, and 3/27

• Released and handed in on Canvas roughly every two weeks

• C/C++ programming language, Python, shell

• Test and run on a Linux VM (instructions to be provided)

• Some of the projects may need superuser privileges

Programming homeworks (30%)

• Please follow all instructions carefully and exactly

• You will lose significant points if:
• I am unable to run your code
• I do not receive your submission in a timely fashion

37

Programming homeworks (30%)
• You can collaborate with others freely, however all submitted

code must be your own work

• Do not blindly lift code from stack overflow, GitHub, chatGPT,
etc.

• Incorporate learning from other sources and produce your own
solutions

• Mandatory to state collaboration & references at the beginning
of submitted program

Course project (~40%)
• Team of 2, latter half of the semester

• Please, no larger teams or individual work

• Aligned with the course topics

• “Significant” programming component
• Measured by complexity and the size of the source code
• Talk to me to ensure (“project specification” info coming up)

Course project (~40%)
• A small open-ended research problem

• Adding new features to an existing open-source codebase

• Reproducing empirical evaluations and benchmarks from a paper
you read

• Re-implementing an existing technique on a different system

• Building a tool that makes further technical work or research possible
or easier

Course project (~40%)
• I will send out some possible ideas

• Welcome & encouraged to work on something you find exciting

• Form teams, brainstorm ideas with each other and me early

• I will help you succeed technically: don’t struggle alone

• 3 concrete deliverables: project specification, source code,
technical report

Project specification
• 1—2 pages, tentatively due 4/03

• Specific, measurable, realistic technical goal
• Existing prior work and why your goal or approach is novel
• Brief description of technical idea and solution approach

• What needs to be built? How will you build it?
• Key performance metrics, qualitative and quantitative, you will

evaluate your system on
• Technical and other risks

Source code
• Due end of the semester (tentatively 5/04)

• Host source code on public repository e.g., on GitHub

• Provide clear documentation (README) with commands and
requirements to run your system

• Provide scripts and commands to reproduce your empirical
evaluation results

Technical report
• 5—10 pages, due end of the semester (tentatively 5/04)

• Latex template to be provided
• One PDF per team submitted on Canvas

• Clearly and fully describe all the technical details:
• Implementation of the solution
• How you evaluated the system: metrics, workloads, executions
• Why did you observe the numerical results that you did?
• Optional: presentations or demonstrations of the system
• Assessed for clarity, comprehensiveness, technical design,

scientific accuracy

Course project (~40%)
• Don’t “just implement” something, also measure and explain it

• Highly coveted technical skills:
• Identifying good performance indicators, representative workloads an

configurations
• Measuring them accurately
• Explaining them clearly with more detailed measurements

• Rigorously evaluating a system may take as long as
implementing it

Course project (~40%)
• Do not blindly lift code from other sources

• When you use existing software libraries, state the nature and
scope of their use clearly in your project spec and report

• Do not blindly lift text (e.g., for project report) from other sources

• Please cite references for specific statements and be thorough

Course participation (10%)
• You are welcome to discuss and collaborate extensively

• Get to know each other, and me

• Meaningful class questions and technical discussion
• Insightful piazza questions or answers or follow-up discussion
• Discussion with me after lecture or in office hours
• Supporting and helping each other grow in any way

• e.g. sharing useful materials through Piazza

Course participation (10%)
• Class participation is a consistent and meaningful activity

• Assessed throughout the semester
• Not a one-time event or a checkbox
• Intention to learn and support, not just a grade

• I’m happy to get to know you professionally and engage in
technical discussions

• If you require professional support from me later (e.g., recommendation
letters), it’s a great way for me to know you better

Collaboration and Integrity policies
• This course welcomes discussion and collaboration
• Do

• Ask questions on Piazza
• Discuss projects and readings with me and with each other
• Read references (textbooks, papers, Internet posts) widely
• Acknowledge each other and all the references

• Use collaboration prompts on programming homeworks; project
• Include who you talked to, references (including on the web) you consulted
• Be as accurate and complete as possible

Collaboration and Integrity policies
• All your written (coded) work must be your (team’s) own

• Understand the problem deeply and produce your own solutions
• Do not

• blindly lift or incorporate other solutions
• look at other people’s code or solutions
• copy code from the web (e.g., other people’s GitHub projects)
• use generative AI (e.g. chatGPT)
• post programming homeworks or quizzes (questions or solutions) on

GitHub, Chegg, CourseHero, etc.

Rutgers takes academic dishonesty very seriously.

Violation of academic integrity at the graduate level
is especially serious. Consequences include

suspension and expulsion.

We will run plagiarism detection tools on all
submitted materials.

If you are ever in doubt, ask me first.

Late policy
• Don’t be late

• If you must be late, inform us in advance

• If you cannot inform us in advance (e.g., medical), provide
official medical note of absence through the University

• Unexcused late submissions will result in losing significant
fraction of points

24/7 Grading Policy
• You may not dispute a grade or request a regrade before 24

hours or after 7 days of receiving it

• Please contact us if you have a legitimate regrading request:

• After 24 hours of receiving the grade: Please take the time to review
your case before contacting me

• Before 7 days have elapsed: we don’t want to forget what the
quiz/project was all about.

Help, Accommodations, etc.
• I’ll make every effort to accommodate reasonable requests that

support your learning better

• sn624@cs.rutgers.edu

• I am committed to help you succeed in this course.

mailto:sn624@cs.rutgers.edu

Next steps
• Sign up for class Piazza: link on canvas home page

• Warm up on C/C++ programming this week
• e.g., linked lists, basic TCP and UDP socket programming

• First programming homework released on Monday

• First quiz due next Tuesday (announcement)
• Thereafter due every Friday and Tuesday

• Meet each other and form project teams

Internet Architecture

Some definitions
• The Internet is an example of a computer network
• Endpoint or Host: Machine running user application
• Packet: a unit of data transmission (ex: 1500 bytes)
• Link: physical communication channel between two or more

machines
•Router: A machine that processes packets moving them

from one link to another towards a destination
•Network: Collection of interconnected machines
• Address: a unique name given to a machine

host/
endpoint

router router

linklink link
host/

endpoint

packet

IP: 10.0.0.1

IP: 128.0.0.2

Some fundamental problems

•Networks must move data between different hosts
•Need to figure out how to move packets from one host

to another host, e.g., how to reach google.com from
your laptop
• Known as the routing problem

Router
Router

Router

59

(1) Routing

(2) Name Resolution

• Routing effectively requires locating the endpoints appropriately
• Memory, speed, reactivity

• Internet addresses allocated hierarchically
• Machine readable, not easy for humans to remember

• Link addresses are tied to the hardware on the endpoint
• Name resolution: how to turn human-readable names

(google.com) into routable addresses?

Zipcode 08854

Zipcode 08090

In general, networks give no guarantees
• Packets may be lost, corrupted, reordered, on the way to the

destination
• Best effort delivery

• Advantage: The network becomes very simple to build
• Don’t have to make it reliable
• Don’t need to implement any performance guarantees
• Don’t need to maintain packet ordering
• Almost any medium can deliver individual packets

• Example: RFC 1149: “IP Datagrams over Avian Carriers”

• Early Internet thrived: easy to engineer, no guarantees to worry about

Providing guarantees for applications
• How should endpoints provide guarantees to applications?

• Transport software on the endpoint oversees implementing
guarantees on top of an unreliable network
• Reliable delivery, ordered delivery, fair sharing of resources

(3) Congestion control
• How quickly should endpoints send data?

• Known as the congestion control problem
• Congestion control algorithms at source endpoints react to

remote network congestion. Part of the transport sw/hw stack.
• Key question: How to vary the sending rate based on network

signals?

(4) High-Speed Interconnect

• Transport won’t help if the network has
choke points: e.g., routers
• The interconnection problem: how do you

design routers to achieve high end-to-
end performance between endpoints?

• Also designing large data center networksData Center

Layering and Protocols

65

Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Application: useful user-level functions

Software/hardware organization at hosts
Communication functions
broken up and “stacked”

Each layer depends on the
one below it.

Each layer supports the
one above it.

The interfaces between
layers are well-defined and

standardized.

Internet software and hardware
are arranged in layers.

Layering provides modularity

Each layer: well-defined function
& interfaces to layers above & below it.

Functionality is implemented in protocols.

• Protocols consist of two things

• Message format
• structure of messages exchanged with an endpoint

• Actions
• operations upon receiving, or not receiving, messages

• Example of a Zoom conversation:
• Message format: English words and sentences
• Actions: when a word is heard, say “yes”; when nothing is heard for

more than 3 seconds, say “can you hear me?”
68

Protocols: The “rules” of networking

• Standardized by the Internet Engineering Task Force (IETF)
• through documents called RFCs (“Request For Comments”)

• Layering of protocols

…

FTP HTTP SIP RTSP

TCP UDP

IP

802.11 X.25 ATM

HTTPS

69

The protocols of the Internet

HTTP FTP TFTPNV

TCP UDP

IP

Ether ATM WiFi…

Link layer

Network

Transport

Applications

The Internet

Link layer

Network

Transport

Applications

The Internet

Packet takes on
headers (metadata)

at each layer

Packet starts as an
app “payload”

Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications

Link layer

Network

Link layer

Network

Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications

Link layer

Network

Link layer

Network

Routers have network and
link layers too!

• Communication over the Internet is a complex problem.

• Layering simplifies understanding, testing, maintaining

• Easy to improve or replace protocol at one layer without affecting
others

73

Layering

