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OpenVSwitch: Requirements
• Support large and complex policies

• Support updates in such policies, e.g., VM migration, new 
customers, …

• Don’t take up too much resources (CPU must do useful work, 
not just policy processing)

• Process packets with high performance
• High throughput and low delay



OVS design



First design: put OF tables in the kernel

Large policies: Low performance with 100+ lookups per packet
Merging policies is problematic: cross-product explosion
Complex logic in kernel: rules with wildcards require complex algoriths



Idea 1: Microflow cache
• Microflow: complete set of packet headers with action
• Example: srcIP, dstIP, IP TTL, srcMAC, dstMAC

• Same insight as tuple space search; attempt to do one memory 
lookup per packet

Microflow cache 
in the kernel

Openflow table 
in user space
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Miss

Use a large 
hash table



Problems with micro-flows
• Too many micro-flows: e.g., each TCP port
• Many micro-flows may be short lived
• Poor cache-hit rate for memory lookup

• Can we cache the outcome of rule lookup directly?

• Naive approach: Cross-product explosion!
• Example: Table 1 on source IP, table 2 on destination IP

• Recurring theme: avoid up-front (proactive) costs 



Idea 2: Mega-flow cache
• Build the cache of rules lazily using just the fields accessed
• Ex: contain just src/dst IP combinations that appeared in packets

Megaflow cache 
in the kernel

Openflow table 
in user space

Hit

Miss

Use tuple 
space search



Outlook: fast packet processing
• Get rid of needless software if you can
• Specialization to app can bring significant benefits
• IDS (hyperscan), caching in switches & load balancers
• Algorithms can be as important as the frameworks

• Software changes
• Application-kernel interface: application must be modified
• Device drivers must often be modified

• Multitenancy: think about implications to weakening fault 
isolation
• Can we get isolation with efficiency?



Going beyond one (software) box
• Safe & efficient composition of middleboxes

• Share or shard state
• Failover and migration
• Placement and routing
• Scaling and compaction



Distributed Control Planes

Acknowledgment: Jennifer Rexford
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tables. In this example, a routing algorithm runs in each and every router and both 
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with 
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages 
containing routing information according to a routing protocol! We’ll cover routing 
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can 
be further illustrated by considering the hypothetical (and unrealistic, but technically 
feasible) case of a network in which all forwarding tables are configured directly by 
human network operators physically present at the routers. In this case, no routing 
protocols would be required! Of course, the human operators would need to interact 
with each other to ensure that the forwarding tables were configured in such a way 
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have 
both a forwarding and a routing function!
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Routing protocols enable FT computation
• What does the protocol compute?
• Spanning tree, shortest path, local policy, arbitrary end-to-end paths

• What algorithm does the protocol run?
• Information exchange + computation
• Spanning-tree construction, distance vector, link-state routing, path-

vector routing, source routing, end-to-end signaling

• How do routers learn end-host locations?
• Learning/flooding, injecting into the routing protocol, dissemination 

using a different protocol, and directory server



Goals of Routing Protocols #1
• Determine good paths from source to destination

• “Good” = least cost
• Least propagation delay
• Least cost per unit bandwidth (e.g., $ per Gbit/s)
• Least congested (workload-driven)

• “Good” =  policy compliant

• “Path” = a sequence of router ports (links)



Goals of Routing Protocols #2
• Make networks resilient to failures

• Routers & links can fail without taking down the entire network

• Entire subsets can be unreachable; rest still reachable

• Hence, the protocol must be distributed



What does the protocol 
compute?

(the outcome, not the computation)



Different ways to represent paths
• Trade-offs
• State required to represent the paths
• Efficiency of the resulting paths
• Ability to support multiple paths
• Complexity of computing the paths
• Which nodes are “in charge”

• Applied in different settings
• LAN, intra-domain, inter-domain



Spanning tree (Ethernet)
• One tree that reaches every node
• Single path between each pair of nodes
• No loops, so can support broadcast easily

• Disadvantages
• Paths are sometimes long
• Some links are not used at all



Shortest paths (OSPF/IS-IS)
• Shortest path(s) between each pair of nodes
• Separate shortest-path tree rooted at each node
• Minimum hop count or minimum sum of edge weights

• Disadvantages
• All nodes need to agree on the link metrics
• Multipath routing is limited to Equal cost multiPath

Set by network 
administrator



Local policy at each hop (BGP)
• Locally best path
• Local policy: each node picks the path it likes best 
• … among the paths chosen by its neighbors

• Disadvantages
• More complicated to configure and model
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End-to-end path selection (IP src route)
• End-to-end path selection
• Each node picks its own end to end paths
• … independent of what other paths other nodes use

• Disadvantages
• More state and complexity in the nodes
• Hop-by-hop destination-based forwarding is not enough



How to compute paths?



Spanning tree algorithm (Ethernet)
• Elect a root
• The switch with the smallest identifier
• And form a tree from there

• Algorithm
• Repeatedly talk to neighbors
• “I think node Y is the root”
• “My distance from Y is d”

• Update information based on neighbors
• Smaller id as the root
• Smaller distance d+1

• Don’t use interfaces not in the path

root

One hop

Three hops



Spanning tree example: switch #4
• Switch #4 thinks it is the root
• Sends (4, 0) message to 2 and 7

• Switch #4 hears from #2
• Receives (2, 0) message from 2
• … and thinks that #2 is the root
• And realizes it is just one hop away

• Switch #4 hears from #7
• Receives (2, 1) from 7
• And realizes this is a longer path
• So, prefers its own one-hop path
• And removes 4-7 link from the tree

1

2

3

4

5

6
7



Shortest-path problem
• Compute: path costs to all nodes
• From a given source u to all other nodes
• Cost of the path through each outgoing link
• Next hop along the least-cost path to s
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The graph abstraction
• Routing algorithms work over an abstract representation of a 

network: the graph abstraction

• Each router is a node in a graph
• Each link is an edge in the graph
• Edges have weights (also called link metrics). Set by netadmin
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The graph abstraction
• Routing algorithms work over an abstract representation of a 

network: the graph abstraction

• G = (N, E)
• N = {u, v, w, x, y, z}
• E = { (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }
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The graph abstraction
• Cost of an edge: c(x, y)
• Examples: c(u, v) = 2, c(u, w) = 5

• Cost of a path = sum of edge costs
• c(path x à w à y à z) = 3 + 1 + 2 = 6

• Outcome of routing: each node should determine the least cost 
path to every other node
• Q1: What information should nodes exchange with each other to 

enable this computation?
• Q2: What algorithm should each node run to compute the least 

cost path to every node?
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Q1: Information exchange
• Link state flooding: the process by which 

neighborhood information of each network 
router is transmitted to all other routers
• Each router sends a link state advertisement 

(LSA) to each of its neighbors
• LSA contains the router ID, the IP prefix 

owned by the router, the router’s neighbors, 
and link cost to those neighbors
• Upon receiving an LSA, a router forwards it to 

each of its neighbors: flooding
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Q1: Information exchange
• Eventually, the entire network receives LSAs 

originated by each router
• LSAs put into a link state database
• LSAs occur periodically and whenever the 

graph changes
• Example: if a link fails
• Example: if a new link or router is added

• The routing algorithm running at each router 
can use the entire network’s graph to 
compute least cost paths
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Q2: The algorithm

Dijkstra’s algorithm
• Given a network graph, the 

algorithm computes the least cost 
paths from one node (source) to all 
other nodes
• This can then be used to compute 

the forwarding table at that node
• Iterative algorithm: maintain 

estimates of least costs to reach 
every other node. After k iterations, 
each node definitively knows the 
least cost path to k destinations

Notation:
• c(x,y): link cost from node x to y;  

= ∞ if not direct neighbors
• D(v): current estimate of cost of 

path from source to destination v
• p(v): (predecessor node) the last 

node before v on the path from 
source to v
• N': set of nodes whose least cost 

path is definitively known



Dijsktra’s Algorithm
1  Initialization: 
2    N' = {u} 
3    for all nodes v 
4      if v adjacent to u 
5          then D(v) = c(u,v) 
6      else D(v) = ∞ 
7 
8   Loop 
9     find w not in N' such that D(w) is a minimum 
10    add w to N' 
11    update D(v) for all v adjacent to w and not in N' : 
12       D(v) = min( D(v), D(w) + c(w,v) ) 
13    /* new cost to v is either old cost to v or known 
14     shortest path cost to w plus cost from w to v */ 
15  until all nodes in N' 

Initial estimates of 
distances are just the 
link costs of neighbors.

Least cost node among 
all estimates. This cost 
cannot decrease further.

Relaxation



Visualization
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Relaxation: for each v 
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the path via w smaller 
than known least cost 
path to v?
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Predecessor of v is w.

Cost of path via w: D(w) + c(w,v)
Cost of known best path: D(v)



Dijkstra’s algorithm: example
Step
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Constructing the forwarding table
• To find the router port to use for a given destination (router), find 

the predecessor of the node iteratively until reaching an 
immediate neighbor of the source u

• The port connecting u to this neighbor is the output port for this 
destination



Constructing the forwarding table
• Suppose we want forwarding entry for z.

D(v),p(v)
2,u

D(w),p(w)
3,y

D(x),p(x)
1,u

D(y),p(y)
2,x

D(z),p(z)
4,y

z: p(z) = y
y: p(y) = x
x: p(x) = u
x is an immediate 
neighbor of u
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Link-state: Shortest-path tree
• Shortest-path tree from u • Forwarding table at u
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Counter-intuitive: Operators may set 
the link metric to achieve certain 
shortest-path trees with the protocol



Path-vector routing (BGP)
• Key idea: advertise the entire path
• Distance vector: send distance metric per dest d
• Path vector: send the entire path for each dest d
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“d: path (2,1)” “d: path (1)”

data traffic data traffic


