
Network

OpenVSwitch: Requirements
• Support large and complex policies

• Support updates in such policies, e.g., VM migration, new
customers, …

• Don’t take up too much resources (CPU must do useful work,
not just policy processing)

• Process packets with high performance
• High throughput and low delay

OVS design

First design: put OF tables in the kernel

Large policies: Low performance with 100+ lookups per packet
Merging policies is problematic: cross-product explosion
Complex logic in kernel: rules with wildcards require complex algoriths

Idea 1: Microflow cache
• Microflow: complete set of packet headers with action
• Example: srcIP, dstIP, IP TTL, srcMAC, dstMAC

• Same insight as tuple space search; attempt to do one memory
lookup per packet

Microflow cache
in the kernel

Openflow table
in user space

Hit

Miss

Use a large
hash table

Problems with micro-flows
• Too many micro-flows: e.g., each TCP port
• Many micro-flows may be short lived
• Poor cache-hit rate for memory lookup

• Can we cache the outcome of rule lookup directly?

• Naive approach: Cross-product explosion!
• Example: Table 1 on source IP, table 2 on destination IP

• Recurring theme: avoid up-front (proactive) costs

Idea 2: Mega-flow cache
• Build the cache of rules lazily using just the fields accessed
• Ex: contain just src/dst IP combinations that appeared in packets

Megaflow cache
in the kernel

Openflow table
in user space

Hit

Miss

Use tuple
space search

Outlook: fast packet processing
• Get rid of needless software if you can
• Specialization to app can bring significant benefits
• IDS (hyperscan), caching in switches & load balancers
• Algorithms can be as important as the frameworks

• Software changes
• Application-kernel interface: application must be modified
• Device drivers must often be modified

• Multitenancy: think about implications to weakening fault
isolation
• Can we get isolation with efficiency?

Going beyond one (software) box
• Safe & efficient composition of middleboxes

• Share or shard state
• Failover and migration
• Placement and routing
• Scaling and compaction

Distributed Control Planes

Acknowledgment: Jennifer Rexford

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header,
i.e, destination IP address

3

Data plane
per-packet
processing, moving
packet from input port
to output port

Distributed
control plane:
Components in every
router interact with
other components to
produce a routing
outcome.

Per-router control plane

Q1. What info
exchanged?

Q2. What
computation?

Routing
protocol

Routing protocols enable FT computation
• What does the protocol compute?
• Spanning tree, shortest path, local policy, arbitrary end-to-end paths

• What algorithm does the protocol run?
• Information exchange + computation
• Spanning-tree construction, distance vector, link-state routing, path-

vector routing, source routing, end-to-end signaling

• How do routers learn end-host locations?
• Learning/flooding, injecting into the routing protocol, dissemination

using a different protocol, and directory server

Goals of Routing Protocols #1
• Determine good paths from source to destination

• “Good” = least cost
• Least propagation delay
• Least cost per unit bandwidth (e.g., $ per Gbit/s)
• Least congested (workload-driven)

• “Good” = policy compliant

• “Path” = a sequence of router ports (links)

Goals of Routing Protocols #2
• Make networks resilient to failures

• Routers & links can fail without taking down the entire network

• Entire subsets can be unreachable; rest still reachable

• Hence, the protocol must be distributed

What does the protocol
compute?

(the outcome, not the computation)

Different ways to represent paths
• Trade-offs
• State required to represent the paths
• Efficiency of the resulting paths
• Ability to support multiple paths
• Complexity of computing the paths
• Which nodes are “in charge”

• Applied in different settings
• LAN, intra-domain, inter-domain

Spanning tree (Ethernet)
• One tree that reaches every node
• Single path between each pair of nodes
• No loops, so can support broadcast easily

• Disadvantages
• Paths are sometimes long
• Some links are not used at all

Shortest paths (OSPF/IS-IS)
• Shortest path(s) between each pair of nodes
• Separate shortest-path tree rooted at each node
• Minimum hop count or minimum sum of edge weights

• Disadvantages
• All nodes need to agree on the link metrics
• Multipath routing is limited to Equal cost multiPath

Set by network
administrator

Local policy at each hop (BGP)
• Locally best path
• Local policy: each node picks the path it likes best
• … among the paths chosen by its neighbors

• Disadvantages
• More complicated to configure and model

2

3 1

4

d
5

6

1 d
1 2 d

2 1 d
2 d

3 2 d
3 4 d

4 d
5 4 d

6 4 d
6 5 4 d

2

3 1

4

d
5

6

1 d
1 2 d

2 1 d
2 d

4 d

3 2 d
3 4 d

5 4 d

6 4 d
6 5 4 d

End-to-end path selection (IP src route)
• End-to-end path selection
• Each node picks its own end to end paths
• … independent of what other paths other nodes use

• Disadvantages
• More state and complexity in the nodes
• Hop-by-hop destination-based forwarding is not enough

How to compute paths?

Spanning tree algorithm (Ethernet)
• Elect a root
• The switch with the smallest identifier
• And form a tree from there

• Algorithm
• Repeatedly talk to neighbors
• “I think node Y is the root”
• “My distance from Y is d”

• Update information based on neighbors
• Smaller id as the root
• Smaller distance d+1

• Don’t use interfaces not in the path

root

One hop

Three hops

Spanning tree example: switch #4
• Switch #4 thinks it is the root
• Sends (4, 0) message to 2 and 7

• Switch #4 hears from #2
• Receives (2, 0) message from 2
• … and thinks that #2 is the root
• And realizes it is just one hop away

• Switch #4 hears from #7
• Receives (2, 1) from 7
• And realizes this is a longer path
• So, prefers its own one-hop path
• And removes 4-7 link from the tree

1

2

3

4

5

6
7

Shortest-path problem
• Compute: path costs to all nodes
• From a given source u to all other nodes
• Cost of the path through each outgoing link
• Next hop along the least-cost path to s

3
2

2
1

1
4

1

4

5

3

u

s
6

The graph abstraction
• Routing algorithms work over an abstract representation of a

network: the graph abstraction

• Each router is a node in a graph
• Each link is an edge in the graph
• Edges have weights (also called link metrics). Set by netadmin

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5Ex: Rutgers campus

u: Computer Science
v: School of Engineering

…

The graph abstraction
• Routing algorithms work over an abstract representation of a

network: the graph abstraction

• G = (N, E)
• N = {u, v, w, x, y, z}
• E = { (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5Ex: Rutgers campus

u: Computer Science
v: School of Engineering

…

The graph abstraction
• Cost of an edge: c(x, y)
• Examples: c(u, v) = 2, c(u, w) = 5

• Cost of a path = sum of edge costs
• c(path x à w à y à z) = 3 + 1 + 2 = 6

• Outcome of routing: each node should determine the least cost
path to every other node
• Q1: What information should nodes exchange with each other to

enable this computation?
• Q2: What algorithm should each node run to compute the least

cost path to every node?

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Q1: Information exchange
• Link state flooding: the process by which

neighborhood information of each network
router is transmitted to all other routers
• Each router sends a link state advertisement

(LSA) to each of its neighbors
• LSA contains the router ID, the IP prefix

owned by the router, the router’s neighbors,
and link cost to those neighbors
• Upon receiving an LSA, a router forwards it to

each of its neighbors: flooding

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Q1: Information exchange
• Eventually, the entire network receives LSAs

originated by each router
• LSAs put into a link state database
• LSAs occur periodically and whenever the

graph changes
• Example: if a link fails
• Example: if a new link or router is added

• The routing algorithm running at each router
can use the entire network’s graph to
compute least cost paths

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Q2: The algorithm

Dijkstra’s algorithm
• Given a network graph, the

algorithm computes the least cost
paths from one node (source) to all
other nodes
• This can then be used to compute

the forwarding table at that node
• Iterative algorithm: maintain

estimates of least costs to reach
every other node. After k iterations,
each node definitively knows the
least cost path to k destinations

Notation:
• c(x,y): link cost from node x to y;

= ∞ if not direct neighbors
• D(v): current estimate of cost of

path from source to destination v
• p(v): (predecessor node) the last

node before v on the path from
source to v
• N': set of nodes whose least cost

path is definitively known

Dijsktra’s Algorithm
1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

Initial estimates of
distances are just the
link costs of neighbors.

Least cost node among
all estimates. This cost
cannot decrease further.

Relaxation

Visualization

v

w

u

N’
nodes whose least

cost paths from u are
definitively known

v’

v’’

N \ N’
Nodes with estimated
least path costs, not
definitively known to
be smallest possible

min cost in N \ N’

D(w)

c(w, v)

D(v)

W should
move to N’.

Relaxation: for each v
in N \ N’, is the cost of
the path via w smaller
than known least cost
path to v?
If so, update D(v)
Predecessor of v is w.

Cost of path via w: D(w) + c(w,v)
Cost of known best path: D(v)

Dijkstra’s algorithm: example
Step

0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞

4,y
4,y
4,y

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Constructing the forwarding table
• To find the router port to use for a given destination (router), find

the predecessor of the node iteratively until reaching an
immediate neighbor of the source u

• The port connecting u to this neighbor is the output port for this
destination

Constructing the forwarding table
• Suppose we want forwarding entry for z.

D(v),p(v)
2,u

D(w),p(w)
3,y

D(x),p(x)
1,u

D(y),p(y)
2,x

D(z),p(z)
4,y

z: p(z) = y
y: p(y) = x
x: p(x) = u
x is an immediate
neighbor of u

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

z (u,x)
destination linkForwarding

table at u:

Link-state: Shortest-path tree
• Shortest-path tree from u • Forwarding table at u

3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t

v (u,v)
w (u,w)
x (u,w)
y (u,v)
z (u,v)

link

s (u,w)
t (u,w)

Counter-intuitive: Operators may set
the link metric to achieve certain
shortest-path trees with the protocol

Path-vector routing (BGP)
• Key idea: advertise the entire path
• Distance vector: send distance metric per dest d
• Path vector: send the entire path for each dest d

3 2 1

d

“d: path (2,1)” “d: path (1)”

data traffic data traffic

