Network

NNNNNNNNNNNNNNNNNNNNNNN

OpenVSwitch: Requirements

« Support large and complex policies

« Support updates in such policies, e.g., VM migration, new
customers, ...

* Don’t take up too much resources (CPU must do useful work,
not just policy processing)

* Process packets with high performance
 High throughput and low delay

OVS design

VMs VM 1 VM 2 VM n

Hypervisor

NICs

Controller

First design: put OF tables in the kernel

packet

OpenFlow tables

Table O

ingress

Physical to
Logical

k, hash
lookups

Table 1

> Flow 1\ Flow 1
Flow 2 Flow 2 /

L2
Lookup

k, hash
lookups

Table 24
% Fowl

Flow 2

Logical to
Physical

k,, hash
lookups

packef

egress

Large policies: Low performance with 100+ lookups per packet

Merging policies is problematic: cross-product explosion

Complex logic in kernel: rules with wildcards require complex algoriths

ldea 1: Microflow cache

* Microflow: complete set of packet headers with action
« Example: srclIP, dstIP, IP TTL, srcMAC, dstMAC

« Same insight as tuple space search; attempt to do one memory
lookup per packet

Microflow cache

Use a large in the kernel

hash table

Openflow table
IN user space

Problems with micro-flows

* Too many micro-flows: e.g., each TCP port

» Many micro-flows may be short lived
* Poor cache-hit rate for memory lookup

« Can we cache the outcome of rule lookup directly?

* Naive approach: Cross-product explosion!
« Example: Table 1 on source IP, table 2 on destination IP

* Recurring theme: avoid up-front (proactive) costs

ldea 2: Mega-flow cache

* Build the cache of rules lazily using just the fields accessed
* Ex: contain just src/dst IP combinations that appeared in packets

Hit

Megaflow cache

Use tuple
P In the kernel

space search

Openflow table
IN user space

Outlook: fast packet processing

 Get rid of needless software if you can

« Specialization to app can bring significant benefits
* IDS (hyperscan), caching in switches & load balancers
* Algorithms can be as important as the frameworks

« Software changes
* Application-kernel interface: application must be modified
 Device drivers must often be modified

« Multitenancy: think about implications to weakening fault
Isolation

« Can we get isolation with efficiency?

Going beyond one (software) box

« Safe & efficient composition of middleboxes

« Share or shard state

* Failover and migration

» Placement and routing
« Scaling and compaction

Distributed Control Planes

Acknowledgment: Jennifer Rexford

Per-router control plane

Distributed

control plane:
Components in every

router interact with "52}{3'
other components to _ o _
produce a routing e data
outcome. o0 lane .
Data pl / i ~ ™" Routing
n

ala plane — protocol
per-packet r

rocessing, movin Q1. What info
p 9 9 o [« é exchanged?

packet from input port ’ N

to output port e <= =
values in arriving i_, N Q2. What
packet header, 1 tation?
é computation?

\.\
I.e, destination IP address =

-

Routing protocols enable FT computation

* What does the protocol compute?
« Spanning tree, shortest path, local policy, arbitrary end-to-end paths

» What algorithm does the protocol run?
* Information exchange + computation

* Spanning-tree construction, distance vector, link-state routing, path-
vector routing, source routing, end-to-end signaling

« How do routers learn end-host locations?

 Learning/flooding, injecting into the routing protocol, dissemination
using a different protocol, and directory server

Goals of Routing Protocols #1

« Determine good paths from source to destination

e “Good” = least cost

_east propagation delay
_east cost per unit bandwidth (e.g., $ per Gbit/s)

_east congested (workload-driven)

« “Good” = policy compliant

« “Path” = a sequence of router ports (links)

Goals of Routing Protocols #2

 Make networks resilient to failures

* Routers & links can fail without taking down the entire network

* Entire subsets can be unreachable; rest still reachable
. RN
* Hence, the protocol must be distributed ‘ @
Nl

What does the protocol
compute?

(the outcome, not the computation)

Different ways to represent paths

* Trade-offs
» State required to represent the paths
» Efficiency of the resulting paths
* Ability to support multiple paths
« Complexity of computing the paths

* Which nodes are “in charge” / \
- Applied in different settings N\
* LAN, intra-domain, inter-domain // \\

Spanning tree (Ethernet)

* One tree that reaches every node
* Single path between each pair of nodes
* No loops, so can support broadcast easily

 Disadvantages
» Paths are sometimes long
» Some links ai not used at all

Shortest paths (OSPF/IS-IS)

Set by network

_ administrator
« Shortest path(s) between each pair of nodes /

» Separate shortest-path tree rooted at each node
* Minimum hop count or minimum sum of edge weights

 Disadvantages
 All nodes need to agree on the link metrics
* Multipath rou % limited to Equal cost multiF :h

/ / \\\\\\\\\
N) \

Na N

N

Local policy at each hop (BGP)

* Locally best path
* Local policy: each node picks the path it likes best
* ... among the paths chosen by its neighbors

 Disadvantages

* More complicated to configure and model 5 21d
21d 2 d

32d 2 32d %
34d/ Yd 34d \\

3 11d 3, 4d\‘ 1
NG 12d ‘ NGARNIREL
— —

End-to-end path selection (IP src route)

* End-to-end path selection
» Each node picks its own end to end paths
* ... Independent of what other paths other nodes use

 Disadvantages
* More state and complexity in the nodes
* Hop-by-hop ¢ stination-based forwarding is n¢ enough

N\ Vi
< —) /\,\\\

N

How to compute paths?

Spanning tree algorithm (Ethernet)

* Elect a root root
 The switch with the smallest identifier
 And form a tree from there

* Algorithm
* Repeatedly talk to neighbors One hop X

* “| think node Y is the root”
« “My distance from Y is d”
» Update information based on neighbors Three hops
« Smaller id as the root
« Smaller distance d+1
* Don’t use interfaces not in the path

Spanning tree example: switch #4

« Switch #4 thinks it is the root
» Sends (4, 0) message to 2 and 7 1

* Switch #4 hears from #2 / \
5

* Receives (2, 0) message from 2 3
* ... and thinks that #2 is the root

* And realizes it is just one hop away
@(7/ \ 6

« Switch #4 hears from #7
* Receives (2, 1) from 7
* And realizes this is a longer path
* So, prefers its own one-hop path
* And removes 4-7 link from the tree

Shortest-path problem

« Compute: path costs to all nodes
* From a given source u to all other nodes
» Cost of the path through each outgoing link
* Next hop along the least-cost path to s

The graph abstraction

* Routing algorithms work over an abstract representation of a
network: the graph abstraction

Ex: Rutgers campus

u: Computer Science
v: School of Engineering

« Each router is a node in a graph
» Each link is an edge in the graph
* Edges have weights (also called link metrics). Set by netadmin

The graph abstraction

* Routing algorithms work over an abstract representation of a
network: the graph abstraction

Ex: Rutgers campus

u: Computer Science
v: School of Engineering

G = (N, E)
*N={u,v,w, x,vy, z}
* E={(uVv), (U)x), (v,x), (v,w), (X,w), (X,y), (Wy), (W,2), (y,2) }

The graph abstraction

« Cost of an edge: c(x,)
« Examples: c(u, v) =2, c(u, w) =5

 Cost of a path = sum of edge costs
ec(pathx >wW>y—>2)=3+1+2=6

« Qutcome of routing: each node should determine the least cost
path to every other node

« Q1: What information should nodes exchange with each other to
enable this computation?

« Q2: What algorithm should each node run to compute the least
cost path to every node?

Q1: Information exchange

* Link state flooding: the process by which
neighborhood information of each network
router is transmitted to all other routers

 Each router sends a link state advertisement
(LSA) to each of its neighbors

* LSA contains the router ID, the IP prefix
owned by the router, the router’s neighbors,
and link cost to those neighbors

* Upon receiving an LSA, a router forwards it to
each of its neighbors: flooding

Q1: Information exchange

« Eventually, the entire network receives LSAs
originated by each router

« LSAs put into a link state database

* LSAs occur periodically and whenever the
graph changes
« Example: if a link fails
« Example: if a new link or router is added

 The routing algorithm running at each router
can use the entire network’s graph to
compute least cost paths

Q2: The algorithm @é@

Dijkstra’s algorithm Notation:

» Given a network graph, the e ¢(X,Y): link cost from node x to y;
algorithm computes the least cost = o0 if not direct neighbors
paths from one node (source) to all _
other nodes * D(Vv): current estimate of cost of

. ath from source to destination v
* This can then be used to compute P

the forwarding table at that node * p(Vv): (predecessor node) the last
- Iterative algorithm: maintain node before v on the path from
source to v

estimates of least costs to reach
every other node. After k iterations, < N': set of nodes whose least cost
each node definitively knows the path is definitively known

least cost path to k destinations

Dijsktra’s Algorithm

1 Initialization:

2 N'={u}

3 for all nodes v

4 if vadjacenttou

3 then D(v) = c(u,v)
6 elseD(v)=

Initial estimates of
distances are just the
link costs of neighbors.

2

8 Loop Least cost node among
9 find w not in N' such that D(w) is @ minimum } all estimates. This cost

10 addwto N cannot decrease further.

11 update D(v) for all v adjacent to w and not in N' :

12 D(v) = min(D(v), D(w) + c(w,v))

13 /* new cost to v is either old cost to v or known

u4 shortest path cost to w plus cost from w to v */
1

Relaxation

5 until all nodes in N’

Visualization @

W should - min cost in N\ N’ N\N’

p)
4 I;I east move toN'. Nodes with estimated
ngt e:ﬂ:vs frzfn eaasre least path costs, not
P u definitively known to

definitively known be smallest possible

Relaxation: for each v
in N\ N’, is the cost of
the path via w smaller
&€® than known least cost
path to v?

If so, update D(v)

Cost of path via w: D(w) + c(w,v) Predecessor of v is w.

Cost of known best path: D(v)

Dijkstra’s algorithm: example

Step ' D(v),p(v) Dw),p(w) D(x),p(x) D(y).p(y) D(z).p(z)
0 u 2,U 9,u 1,u oo oo
1 UXW 2.X oo
2 uxyW 4,y
3 uxyv/ 3,y 4,y
4 uxva/
5 uxyvwz

Constructing the forwarding table

* To find the router port to use for a given destination (router), find
the predecessor of the node iteratively until reaching an
immediate neighbor of the source u

* The port connecting u to this neighbor is the output port for this
destination

Constructing the forwarding table

* Suppose we want forwarding entry for z.

D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z) Z:p(z) =
2,u 3.y 1,u 2,X 4.y / Y. DEy; =)}2

\/\/ X: p(X) = u

X is an immediate
neighbor of u

Forwarding destination | link
table at u: Z ‘ (u,X)

Link-state: Shortest-path tree

« Shortest-path tree fromu < Forwarding table at u

Counter-intuitive: Operators may set
the link metric to achieve certain
shortest-path trees with the protocol

~ H N< X S <

Path-vector routing (BGP)

» Key idea: advertise the entire path
 Distance vector: send distance metric per dest d

« Path vector: send the entire path for each dest d

“d: path (2,1)” “d: path (1)”

data traffic data traffic

