
Network

Modern NICs and
architectures can also
do direct cache access

(DCA)

Interrupt mitigation
• Interrupt processing at high rate and priority prevents any other

part of the system from progressing (receive livelock).
• Mitigations:
• (1) Interrupt coalescing:
• Wait (at NIC) for more packets or a timeout until interrupting

• (2) Polling to schedule the work, avoiding preemption
• (3) CPU or packet quotas on polling to ensure other parts of the

system (e.g. user space app) can progress
• Re-enable interrupts if there is less work than allotted quota

Allocate packet data structures
in memory (sk_buff, mbufs, …)
Optionally, steer packet to core

running the application

SoftIRQ
(apps cannot
interrupt this
processing)

Other things that happen afterward
• Netfilter: tracking TCP connection state, firewalling, NAT, tcpdump
• IP protocol processing: routing
• Transport processing (UDP/TCP protocol layer)
• Copy into user space socket buffers
• Applications use socket APIs to process the packets

• Work that is independent per (group of) packets can often be handed
off to the NIC. These are often referred to as NIC offload
• TSO: TCP segmentation offload; LRO: Large Receive Offload
• IP checksum (transmit & receive)
• https://www.kernel.org/doc/html/latest/networking/segmentation-

offloads.html

https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html

Different Kinds of Packet Steering
• Receive-Side Scaling (RSS)
• NIC determines which CPU to hardware interrupt (IRQ)
• NICs have multiple queues, process each queue (potentially) at

different CPU cores
• Use a hash function over packet headers at NIC to direct to cores
• Each NIC receive queue has a different associated IRQ #
• IRQs can be configured to have affinity to specific CPU cores
• This CPU runs the hardware interrupt handler

• Receive Packet Steering (RPS)
• select CPU to handle protocol processing after interrupt handling

(starting from netif_receive_skb). Use inter-processor interrupts
• Useful as a pure software method to distribute protocol processing

Different Kinds of Packet Steering
• Receive Flow Steering (RFS)
• Like RPS, but consider the CPU where the application is running
• Improve data cache hit rates (packet read on the same CPU core

that it was written to)
• Pure software technique

• Accelerated Receive Flow Steering (aRFS)
• Implement RFS affinity in hardware
• Network stack identifies which CPU is processing packets
• Device driver programs the appropriate queue # into hardware
• Needs hardware support

Socket buffers
• Allocate packet data in arbitrary chunks (multiples of 64 bytes)
• Support arbitrary packet sizes, fragments, deferred processing

*next
*prev

*next
*prev

*next
*prev

skb skb skb …
*head
*data
*tail
*end
…

buffer

pkt data
headroom

tailroom

FreeBSD sendto() code path

Netmap ATC12.

Overheads are sprinkled throughout
the packet processing stack.

Software
specialization

(1) Shared memory: avoid per-byte costs
• Remove user-kernel

data copies
• Other systems use

similar ideas:
• Finish processing

entirely within the
kernel (e.g., click-
kernel, eBPF)
• Expressiveness

• Expose NIC buffers
directly to user space
(PF_RING, DPDK)
• Isolation

(2) Data representation: pre-allocated
fixed size buffers and rings
• Avoid per-byte costs

by pre-allocating
chunks of a fixed
size (max packet
size)
• No allocation and

freeing mbuf/sk_buff
at run time
• Exchange

descriptors on ring
buffers between app
and NIC

(3) Amortize operations: batching
• Batch notifications to NIC for

packets written for transmission or
free buffers available for reception.
• Process packets in batches
• Effect: Better instruction cache hit

rates

The abstraction has changed!
• The techniques above (embodied into fast packet processing

frameworks like netmap, DPDK, eBPF) aim to move data to
applications quickly
• Ideal for middleboxes and software routers

• But if needed, applications must re-implement functionality that is
already part of the kernel network stack (e.g. transport)
• The benefit of these frameworks is less clear for application endpoints

which do need transport, routing, …

• Typical utilities (ping, tcpdump, etc.) may no longer work

• The story becomes more complicated with virtualization

Case studies

Routebricks: fast software router
• Inspiration from interconnects

• Fast processing on a single machine

• Multi-queue NICs

• Data interconnection patterns between queues and cores
• Receive side scaling (RSS)

OpenVSwitch: fast virtual switch
• Early roots in networking: first switches were fully in software
• Until high link speeds forced everyone to make ASICs

• As a tool for experimentation with SDN protocols (eg: Openflow)
• Advent of virtualization
• Need flexible policies (ie: flow rules) inside endpoints!

https://www.openvswitch.org/

Policies in virtualized switches
• Tenant policies
• Network virtualization: I want the physical network to look like my

own, and nobody else is on it. Use own addresses

• Provider policies
• Traffic must follow the ACLs and paths set by the provider

• Topology traversal
• Use the core of the DCN as a mesh of point to point tunnels

Where should policies be implemented?

Hypervisor (OR) orchestrator

Virtual machine Container Lambda

App AppAppApp

OpenVSwitch: Requirements
• Support large and complex policies

• Support updates in such policies, e.g., VM migration, new
customers, …

• Don’t take up too much resources (CPU must do useful work,
not just policy processing)

• Process packets with high performance
• High throughput and low delay

OVS design

First design: put OF tables in the kernel

Large policies: Low performance with 100+ lookups per packet
Merging policies is problematic: cross-product explosion
Complex logic in kernel: rules with wildcards require complex algoriths

Idea 1: Microflow cache
• Microflow: complete set of packet headers with action
• Example: srcIP, dstIP, IP TTL, srcMAC, dstMAC

• Same insight as tuple space search; attempt to do one memory
lookup per packet

Microflow cache
in the kernel

Openflow table
in user space

Hit

Miss

Use a large
hash table

Problems with micro-flows
• Too many micro-flows: e.g., each TCP port
• Many micro-flows may be short lived
• Poor cache-hit rate for memory lookup

• Can we cache the outcome of rule lookup directly?

• Naive approach: Cross-product explosion!
• Example: Table 1 on source IP, table 2 on destination IP

• Recurring theme: avoid up-front (proactive) costs

Idea 2: Mega-flow cache
• Build the cache of rules lazily using just the fields accessed
• Ex: contain just src/dst IP combinations that appeared in packets

Megaflow cache
in the kernel

Openflow table
in user space

Hit

Miss

Use tuple
space search

Outlook: fast packet processing
• Get rid of needless software if you can
• Specialization to app can bring significant benefits
• IDS (hyperscan), caching in switches & load balancers
• Algorithms can be as important as the frameworks

• Software changes
• Application-kernel interface: application must be modified
• Device drivers must often be modified

• Multitenancy: think about implications to weakening fault
isolation
• Can we get isolation with efficiency?

Going beyond one (software) box
• Safe & efficient composition of middleboxes

• Share or shard state
• Failover and migration
• Placement and routing
• Scaling and compaction

