Network

NNNNNNNNNNNNNNNNNNNNNNN

P—

RAM (rin, butder)

Yw,‘\f'* NTC NIC L)
I Rectived by 1 '
D, 4 __2DMA —5 [packet
Modern NICs and
- 5. TRQ Cearel architectures can also
3. - do direct cache access
3 Driver (DCA)
L{‘ Rons j_?\@\ hww” o
L1

Interrupt mitigation

* Interrupt processing at high rate and priority prevents any other
part of the system from progressing (receive livelock).

 Mitigations:
* (1) Interrupt coalescing:

« Wait (at NIC) for more packets or a timeout until interrupting
* (2) Polling to schedule the work, avoiding preemption

* (3) CPU or packet quotas on polling to ensure other parts of the
system (e.g. user space app) can progress

* Re-enable interrupts if there is less work than allotted quota

sobinerdett polllist

lﬂe‘f—f%m‘m |

7. poll_list enby rel'riwﬂg N l

L4

2. Bodset ol clafed
fime a’C Ck‘k“['

3. Drivtr P‘“
comled -

.)D-) -y

SoftIRQ
(apps cannot
interrupt this

RAM (ring botéer)

[T processing)
\
chke:t
f‘ﬁ Dackets are haryested Lron,
- ring bokfer.

o | € S
nap:._gro- receive !

G VQL((@"";: are handed |, api-gro-recei A

\ dor possihk GRO.
GRO Lot

‘| net—feccue s kE]

l

D——?—_J-:‘D—‘}

b. Paets are (omlesced or

i)b—f;((S

\

Driver \

Allocate packet data structures

Dusel) pn wika nek—receive-5kb iIn memory (sk_buff, mbufs, ...)

deward proﬁx—oﬁ sladks.

Optionally, steer packet to core

running the application

Other things that happen afterward

* Netfilter: tracking TCP connection state, firewalling, NAT, tcpdump
» IP protocol processing: routing

 Transport processing (UDP/TCP protocol layer)

» Copy into user space socket buffers

» Applications use socket APIs to process the packets

» Work that is independent per (group of) packets can often be handed
off to the NIC. These are often referred to as NIC offload

« TSO: TCP segmentation offload; LRO: Large Receive Offload
 |P checksum (transmit & receive)

* https://www.kernel.org/doc/html/latest/networking/segmentation-
offloads.html

https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html

Different Kinds of Packet Steering

* Receive-Side Scaling (RSS)
* NIC determines which CPU to hardware interrupt (IRQ)

* NICs have multiple queues, process each queue (potentially) at
different CPU cores

« Use a hash function over packet headers at NIC to direct to cores
« Each NIC receive queue has a different associated IRQ #

 |IRQs can be configured to have affinity to specific CPU cores

* This CPU runs the hardware interrupt handler

* Receive Packet Steering (RPS)

» select CPU to handle protocol processing after interrupt handling
(starting from netif_receive_skb). Use inter-processor interrupts

» Useful as a pure software method to distribute protocol processing

Different Kinds of Packet Steering

* Receive Flow Steering (RFS)
 Like RPS, but consider the CPU where the application is running

 Improve data cache hit rates (packet read on the same CPU core
that it was written to)

* Pure software technique

 Accelerated Receive Flow Steering (aRFS)
* Implement RFS affinity in hardware
* Network stack identifies which CPU is processing packets
 Device driver programs the appropriate queue # into hardware
* Needs hardware support

Socket buffers

* Allocate packet data in arbitrary chunks (multiples of 64 bytes)
« Support arbitrary packet sizes, fragments, deferred processing

buffer
headroom

skb skb skb

tailroom

File Function/description time | delta
|
user program sendto 8 @
system call
FreeBSD sendto() COde path uipc_syscalls.c | sys_sendto 104
uipc_syscalls.c | sendit 111
uipc_syscalls.c | kern_sendit 118
uipc_socket.c sosend
uipc_socket.c sosend_dgram 137
. sockbuf locking, mbuf
Overheads are sprinkled throughout allocation, copyign
the packet processing stack. udp-usrreq.c | udp.-send 27
udp_usrreq.c udp-output il
ip-output.c ip_output 198
route lookup, ip header
setup
if _ethersubr.c ether_output 528 162
SOf‘tW are MAC header lookup and
copy, loopback
S p e C | a I | y at | O N if_ethersubr.c ether_output_frame 690
ixgbe.c ixgbe mq_start 698
ixgbe.c ixgbe_mqg_start_locked| 720
ixgbe.c ixgbe_xmit 730 220
mbuf mangling, device
programming
Netmap ATC12. - on wire 950

(1) Shared memory: avoid per-byte costs

« Remove user-kernel 4 netmap if netmap rings 2\ NIC ring

\

\

* Other systems use

data COpleS num rings » ring size | phy addr
o | P pkt_buf [T | 1len
ring ofs/|] =

. . . avail pkt_buf [
similar ideas: — flags
. . . buf ofs
* Finish processing f sTnee | Ten | index

kernel, eBPF)

entirely within the — 1/ A pkt_but
kernel (e.g., click- T
» Expressiveness

» Expose NIC buffers
directly to user space _
(PF_R|NG, DPDK) _ Shared memory reglon/

* |solation

(2) Data representation: pre-allocated
fixed size buffers and rings

e Avoid per-byte costs [netmap if netmap rings \ NIC ring

| phy addr

\

\

size (max packet cage
. buf_ ofs
SIZG) f flags | len | index_|

by pre-allocating il I L
chunks of a fixed ring-ofsll vail fpktbuf s

- No allocation and - ‘ :k:f
freeing mbuf/sk_buff -

at run time |

» Exchange
descriptors on ring \ Shared memory region/
buffers between app
and NIC

(3) Amortize operations: batching

» Batch notifications to NIC for —
packets written for transSmisSSION OF /i v or e o sorors e o 0 v

* port. The mapping is @ —> 1, 1 -> 0, 2 —> 3, 3 —> 2, etc.

free buffers available for reception.
* Process packets in batches

 Effect: Better instruction cache hit
rates

- O A PdCKELS, o)
struct rte_mbuf *bufs[BURST_SIZE];
const uintl6_t nb_rx = rte_eth_rx_burst(port, 0,
bufs, BURST_SIZE);

* >end burst of TX packets, to second port of pair. =
const uintl6_t nb_tx = rte_eth_tx_burst(port ~ 1, 0,
bufs, nb_rx);

i ce
if (unlikely(no_ o
uintl6_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)
rte_pktmbuf_free(bufs [bufl]);

The abstraction has changed!

* The techniques above (embodied into fast packet processing
frameworks like netmap, DPDK, eBPF) aim to move data to
applications quickly

 |deal for middleboxes and software routers

 But if needed, applications must re-implement functionality that is
already part of the kernel network stack (e.g. transport)

* The benefit of these frameworks is less clear for application endpoints
which do need transport, routing, ...

* Typical utilities (ping, tcpdump, etc.) may no longer work

* The story becomes more complicated with virtualization

Case studies

Routebricks: fast software router

* Inspiration from interconnects .
7 ® ~
 Fast processing on a single machine
. ~ ® 1
* Multi-queue NICs

« Data interconnection patterns between queues and cores
* Receive side scaling (RSS)

OpenVSwitch: fast virtual switch

» Early roots in networking: first switches were fully in software
 Until high link speeds forced everyone to make ASICs

* As a tool for experimentation with SDN protocols (eg: Openflow)

« Advent of virtualization
* Need flexible policies (ie: flow rules) inside endpoints!

https://www.openvswitch.org/

Policies in virtualized switches

 Tenant policies

* Network virtualization: | want the physical network to look like my
own, and nobody else is on it. Use own addresses

* Provider policies
* Traffic must follow the ACLs and paths set by the provider

 Topology traversal
» Use the core of the DCN as a mesh of point to point tunnels

Where should policies be implemented?

Virtual machine Container Lambda

- Hypervisor (OR) orchestrator

OpenVSwitch: Requirements

« Support large and complex policies

« Support updates in such policies, e.g., VM migration, new
customers, ...

* Don’t take up too much resources (CPU must do useful work,
not just policy processing)

* Process packets with high performance
 High throughput and low delay

OVS design

VMs VM 1 VM 2 VM n

Hypervisor

NICs

Controller

First design: put OF tables in the kernel

packet

OpenFlow tables

Table O

ingress

Physical to
Logical

k, hash
lookups

Table 1

> Flow 1\ Flow 1
Flow 2 Flow 2 /

L2
Lookup

k, hash
lookups

Table 24
% Fowl

Flow 2

Logical to
Physical

k,, hash
lookups

packef

egress

Large policies: Low performance with 100+ lookups per packet

Merging policies is problematic: cross-product explosion

Complex logic in kernel: rules with wildcards require complex algoriths

ldea 1: Microflow cache

* Microflow: complete set of packet headers with action
« Example: srclIP, dstIP, IP TTL, srcMAC, dstMAC

« Same insight as tuple space search; attempt to do one memory
lookup per packet

Microflow cache

Use a large in the kernel

hash table

Openflow table
IN user space

Problems with micro-flows

* Too many micro-flows: e.g., each TCP port

» Many micro-flows may be short lived
* Poor cache-hit rate for memory lookup

« Can we cache the outcome of rule lookup directly?

* Naive approach: Cross-product explosion!
« Example: Table 1 on source IP, table 2 on destination IP

* Recurring theme: avoid up-front (proactive) costs

ldea 2: Mega-flow cache

* Build the cache of rules lazily using just the fields accessed
* Ex: contain just src/dst IP combinations that appeared in packets

Hit

Megaflow cache

Use tuple
P In the kernel

space search

Openflow table
IN user space

Outlook: fast packet processing

 Get rid of needless software if you can

« Specialization to app can bring significant benefits
* IDS (hyperscan), caching in switches & load balancers
* Algorithms can be as important as the frameworks

« Software changes
* Application-kernel interface: application must be modified
 Device drivers must often be modified

« Multitenancy: think about implications to weakening fault
Isolation

« Can we get isolation with efficiency?

Going beyond one (software) box

« Safe & efficient composition of middleboxes

« Share or shard state

* Failover and migration

» Placement and routing
« Scaling and compaction

