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Nonblocking designs are nontrivial

Two aspects: topology and routing



3-stage Clos network (r*n X r*n ports)

r switchesn X m m switchesr Xr r switches m X n



Rearrangeably nonblocking Clos built with
identical switches: n2Xn? using 3n nXn

nXn nXxXn nXn

VLB
nXn — nXn — nXn —
nXn — nXn — nXn —
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Increasing # ports: Butterfly Networks

« Can we reduce internal # ports
for a given external # ports?

» K-ary L-butterfly:

« Use L*K KxK port switches to
build KLXKL port switch

* Figure: K=2,L=3

e Produce n3Xn® switch from 3n
nXn switches

 Clos: n2Xn?
* Routing is deterministic
* Tradeoff: more blocking
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https://ece757.ece.wisc.edu/lect09-interconnects-2-topology.pdf



(4) MGR: Crossbars & Matching
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(4) RMT: Memory switching fabric

« RMT uses memory as the fabric to hold packet headers and payloads
between any two interfaces

» Key challenge: simultaneous access to memory (N memory ports)

* In the late 90s and early 2000s, there was considerable research on
building high-speed packet buffers

» Today: shared memory switches & routers (shared =» across ports)
« Fast memory can be clocked at 1 GHz

 Fundamental tradeoff: faster memories are not very dense
« Can’t make the memory too large; can’t hold too any packets

« Workaround: exploit memory access patterns: e.g., each queue is FIFO
» Traffic manager implements scheduling & buffer management



(5) Traffic Manager

* Where should the packets not currently serviced wait?
» Two designs: Input-queued vs. output-queued

 Output queueing avoids HOL blocking exhibited by input
queueing.
« Suppose port 1 wants to send to both 2 and 3 but port 2 busy
* Packets from p1 towards p3 need not be delayed
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(5) Traffic Manager

» Queueing represents output port contention

* A single output port can be represented by multiple queues
* e.g., to implement weighted fair queueing

« Each queue is just a linked list in the shared memory
* Maximum flexibility in queue sizes, but pointer overhead
« Separate memory to maintain per-queue heads and tails

queues
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(5) Traffic Manager: Scheduling policies

* How to dequeue packets in output port buffer? packet
scheduling algorithms

* Fair queueing across ports or flows
o Strict prioritization of some ports over others
 Rate limiting per port

» Possible to make it flexible: PIFOs

Tokens arrive (rate r)

Max # of tokens
(d tokens)

packets




(5) Traffic Manager: Buffer Management

* Q: how to enqueue packets into buffer?
« If buffer is full, which packet should be dropped? :-I

* Typical buffer management: Tail-drop

« Want fairness: if queue 1 has too many buffered pkts, don't tail-
drop g2
« Share memory by partitioning (carving memory out) across queues

« Want efficiency: if g1 has no pkts, g2 should be able to use (nearly)
all buffer memory

* One possibility: static thresholds for buffer occupancy per port
« Can be made fair or efficient but not both



(5) Demand-aware buffer management

* DT: “Dynamic Queue Length Thresholds for Shared-Memory
Packet Switches”, Choudhury and Hahne

« Compute a critical (dynamic) queue length threshold T

10 =a-(5- o) =a- (8- ¥ 00)
 Port blocked from adding packets if

Q'(t) > 1(¢)



(6) Egress line termination

« Combine headers with payload for transmission
* Must incorporate effect of header modifications
» Also called deparsing or serialization

» Multicast: egress-specific packet processing
 Ex: different source MAC address for each output port

» Multicast makes almost everything inside the switch
(interconnect, lookups, queueing) more complex



Note: three kinds of router hardware data
plane programmability

» Packet header formats, i.e., the packet parser
« Example: Go from IPv4 -> IPv6

» Custom packet format to carry financial info at high speed on a
point-to-point link

 Table formats, actions, sizes, i.e., the match-action tables
« Change which fields in the packet can be processed by a table

» Control the table sizes, i.e., # entries, and hence the memory
resource footprint according to use case.



Note: three kinds of router hardware data
plane programmability

» Packet scheduling, i.e., the traffic manager
 Flexible classification of packets

 Flexible assignment of ordering and timing of when packets are
transmitted from an outgoing link



... Which is distinct from control plane
programmability

 The control plane must compute the packet-processing rules
put into the memory on the router ASIC

« Example: packet with IPv4 destination 10.0.0.1 must go out of
port 4

« Data plane programmability refers to the flexibility in the allowed
set of packet headers, tables, and actions themselves, not the
actual rules.

» Example: There is a table that matches on IPv4 destination addr
whose action is to determine the output port



Software Data Plane



Why software?

 Applications run in software. Get packets to/from apps quickly

« Software routers:
» virtualization and cloud (e.g., openvSwitch)

* Middleboxes (network functions)

* Network Address Translation, mobile processing nodes (packet
gateways, radio controllers, ...), tunneling gateways (IPsec/SSL
VPN), traffic analysis & security (IDS, firewalls, spam),
CDNs/caches, video accelerators, ...



Packet processing on Linux



How Is data received in software?

« Have CPU poll the network interface card (NIC) memory to
copy data

* Interrupt from the NIC (“data is available”), then CPU reads
memory

 Direct Memory Access (DMA): NIC moves data to memory
* Reduce or remove CPU from the “data moving” loop
» Large data or scattered data
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Hardware Operating System
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Revisiting network I/O APls: The netmap framework. CACM’12



Interrupt mitigation

* Interrupt processing at high rate and priority prevents any other
part of the system from progressing (receive livelock).

 Mitigations:
* (1) Interrupt coalescing:

« Wait (at NIC) for more packets or a timeout until interrupting
* (2) Polling to schedule the work, avoiding preemption

* (3) CPU or packet quotas on polling to ensure other parts of the
system (e.g. user space app) can progress

* Re-enable interrupts if there is less work than allotted quota
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