
Network

Hardware Router overview

… …
Switching

fabric

Input port

Input port

Input port

Output port

Output port

Output port

Line
Termination Parsing Lookup &

Modification
Buffering &
Scheduling

Line
Termination

(Match-Action) (Traffic
Management)

Nonblocking designs are nontrivial

Two aspects: topology and routing

3-stage Clos network (r*n X r*n ports)

…

n X m
…

n X m
…

n X m
…

…

r switches n X m

…

m X n
…

m X n
…

m X n
…

…

r switches m X n

…

r X r
…

r X r
…

r X r
…

…

m switches r X r

Rearrangeably nonblocking Clos built with
identical switches: n2Xn2 using 3n nXn

…

n X n
…

n X n
…

n X n
…

…

n switches n X n

…

n X n
…

n X n
…

n X n
…

…

n switches n X n

…

n X n
…

n X n
…

n X n
…

…

n switches n X n

VLB

Increasing # ports: Butterfly Networks
• Can we reduce internal # ports

for a given external # ports?
• K-ary L-butterfly:
• Use L*K KxK port switches to

build KLXKL port switch
• Figure: K = 2, L = 3
• Produce n3Xn3 switch from 3n

nXn switches
• Clos: n2Xn2

• Routing is deterministic
• Tradeoff: more blocking https://ece757.ece.wisc.edu/lect09-interconnects-2-topology.pdf

(4) MGR: Crossbars & Matching
• MGR uses a nonblocking crossbar

across 15 ports

• Strategies to match incoming
demands & output ports quickly
• Greedy (simple), wavefront, group
• Try to address fairness across ports

(4) RMT: Memory switching fabric
• RMT uses memory as the fabric to hold packet headers and payloads

between any two interfaces
• Key challenge: simultaneous access to memory (N memory ports)
• In the late 90s and early 2000s, there was considerable research on

building high-speed packet buffers
• Today: shared memory switches & routers (shared è across ports)
• Fast memory can be clocked at 1 GHz

• Fundamental tradeoff: faster memories are not very dense
• Can’t make the memory too large; can’t hold too any packets

• Workaround: exploit memory access patterns: e.g., each queue is FIFO
• Traffic manager implements scheduling & buffer management

(5) Traffic Manager
• Where should the packets not currently serviced wait?
• Two designs: Input-queued vs. output-queued
• Output queueing avoids HOL blocking exhibited by input

queueing.
• Suppose port 1 wants to send to both 2 and 3 but port 2 busy
• Packets from p1 towards p3 need not be delayed

(5) Traffic Manager
• Queueing represents output port contention
• A single output port can be represented by multiple queues
• e.g., to implement weighted fair queueing

• Each queue is just a linked list in the shared memory
• Maximum flexibility in queue sizes, but pointer overhead
• Separate memory to maintain per-queue heads and tails

(5) Traffic Manager: Scheduling policies
• How to dequeue packets in output port buffer? packet

scheduling algorithms
• Fair queueing across ports or flows
• Strict prioritization of some ports over others
• Rate limiting per port
• Possible to make it flexible: PIFOs

(5) Traffic Manager: Buffer Management
• Q: how to enqueue packets into buffer?
• If buffer is full, which packet should be dropped?

• Typical buffer management: Tail-drop
• Want fairness: if queue 1 has too many buffered pkts, don’t tail-

drop q2
• Share memory by partitioning (carving memory out) across queues

• Want efficiency: if q1 has no pkts, q2 should be able to use (nearly)
all buffer memory
• One possibility: static thresholds for buffer occupancy per port
• Can be made fair or efficient but not both

(5) Demand-aware buffer management
• DT: “Dynamic Queue Length Thresholds for Shared-Memory

Packet Switches”, Choudhury and Hahne
• Compute a critical (dynamic) queue length threshold T

• Port blocked from adding packets if

(6) Egress line termination
• Combine headers with payload for transmission
• Must incorporate effect of header modifications
• Also called deparsing or serialization

• Multicast: egress-specific packet processing
• Ex: different source MAC address for each output port

• Multicast makes almost everything inside the switch
(interconnect, lookups, queueing) more complex

Note: three kinds of router hardware data
plane programmability
• Packet header formats, i.e., the packet parser
• Example: Go from IPv4 -> IPv6
• Custom packet format to carry financial info at high speed on a

point-to-point link

• Table formats, actions, sizes, i.e., the match-action tables
• Change which fields in the packet can be processed by a table
• Control the table sizes, i.e., # entries, and hence the memory

resource footprint according to use case.

Note: three kinds of router hardware data
plane programmability
• Packet scheduling, i.e., the traffic manager
• Flexible classification of packets
• Flexible assignment of ordering and timing of when packets are

transmitted from an outgoing link

… which is distinct from control plane
programmability

• The control plane must compute the packet-processing rules
put into the memory on the router ASIC
• Example: packet with IPv4 destination 10.0.0.1 must go out of

port 4

• Data plane programmability refers to the flexibility in the allowed
set of packet headers, tables, and actions themselves, not the
actual rules.
• Example: There is a table that matches on IPv4 destination addr

whose action is to determine the output port

Software Data Plane

Why software?
• Applications run in software. Get packets to/from apps quickly
• Software routers:
• virtualization and cloud (e.g., openvSwitch)

• Middleboxes (network functions)
• Network Address Translation, mobile processing nodes (packet

gateways, radio controllers, …), tunneling gateways (IPsec/SSL
VPN), traffic analysis & security (IDS, firewalls, spam),
CDNs/caches, video accelerators, …

Packet processing on Linux
Receive path

How is data received in software?
• Have CPU poll the network interface card (NIC) memory to

copy data

• Interrupt from the NIC (“data is available”), then CPU reads
memory

• Direct Memory Access (DMA): NIC moves data to memory
• Reduce or remove CPU from the “data moving” loop
• Large data or scattered data

Modern NICs and
architectures can also
do direct cache access

(DCA)

Revisiting network I/O APIs: The netmap framework. CACM’12

Interrupt mitigation
• Interrupt processing at high rate and priority prevents any other

part of the system from progressing (receive livelock).
• Mitigations:
• (1) Interrupt coalescing:
• Wait (at NIC) for more packets or a timeout until interrupting

• (2) Polling to schedule the work, avoiding preemption
• (3) CPU or packet quotas on polling to ensure other parts of the

system (e.g. user space app) can progress
• Re-enable interrupts if there is less work than allotted quota

Allocate packet data structures
in memory (sk_buff, mbufs, …)
Optionally, steer packet to core

running the application

RSS
aRFS

