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Life of a packet in a hardware router
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RMT: Match-Action Table memory design

« Match and Action units supplied with the Packet Header Vector
* Each stage accesses its own memory containing tables

 RMT uses a crossbar to pick PHYV fields for matching against
contents of SRAM/TCAM banks puv [ Mem banks

* Flexible key generation for lookup  + [ 1[3

xbar

* Distinction from fixed-function: |:| D
» User-programmed fields stored in table [ 1=

* PHVs include user-programmed fields
« Table match keys chosen by users




RMT: Match-Action Table memory design

Entry looked up in the memory (SRAM/TCAM) contains a
pointer to the instruction (action) for that entry

Instructions implemented through programmable ALUs

* More general ALUs than fixed-function hardware devices
Feasible since compute components “cheap” inside a router
VLIW: operate on multiple headers simultaneously

Entry also contains pointers to: PHV [ 1

ALUs
[
« Action data (e.g., output port), — ] D
[

 statistics (counters), if needed



Achieving reconfigurable match-action

Separately configurable and addressable memory blocks is the
key to using tables flexibly. Independent block level access

L2

Cost: 14%
extra area

(& power) Each table in a match-action stage may use a different crossbar
for fatter  configuration to extract a different set of fields from the PHV

wires Different memory banks can contain entries for different tables
(e.g., IPv4 matching, virtualization, ...)

Fixed-function matching Flexible match function



Memory layout and use matters

* Flexible partitioning of memory across SRAM and TCAM

 Fixed size memory blocks: internal fragmentation

e Deterministic access times
 All of itis SRAM or TCAM

* Interesting compiler concerns
« “Packing” tables
» Within & across pipeline stage

Stage: 1 2 32
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Who programs the rules? Control plane
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Distributed control planes
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Software-defined network (SDN)

. loslcally-centralized control plane
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SDN (1/2): Centralized control plane

Control planes lifted from switches
iInto a logically centralized controller




e to data plane
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Packet after route lookup

« What we have after lookup and modifications:
« One or more output ports, or a decision to drop
 packet headers, possibly modified from ingress

» Goal: reconstitute the headers with payload and send the
packet out of one or more output ports

* Move the packet (header) to output through the switching fabric



Building a high-speed
switching fabric



A single (n X m)-port switching fabric

* Different designs of switching fabric possible
« Assume n ingress ports and m egress ports, half duplex links

bus



A single (n X m)-port switching fabric
Electrical/mechanical/
» We want a design such that: electronic crossover

* Any port can connect to any other
directly if all other ports free =

» Nonblocking: if input port x and output -
port y are both free, they should be I
able to connect

* Regardless of other ports being
connected.

* If not satisfied, switch is blocking.

crossbar g




Nonblocking designs are nontrivial

Two aspects: topology and routing



High port density + nonblocking == hard!

* Low-cost nonblocking crossbars are feasible for small # ports
* However, it is costly to be nonblocking with many ports

* [f each crossover is as fast as each input port,
* Number of crossover points ==n *m
» Cost grows quadratically on the number of input ports

 Else, crossover must transition faster than the port
* ... SO that you can keep the number of crossovers small



Nonblocking switches with many ports

« Key principle: Build a fast, nonblocking switch with many ports
using many fast, nonblocking switches with a small number of
ports.

* How to build large nonblocking switches?
* The subject of interconnection networks
* https://en.wikipedia.org/wiki/Multistage interconnection networks



https://en.wikipedia.org/wiki/Multistage_interconnection_networks

3-stage Clos network (r*n X r*n ports)

r switchesn X m m switchesr Xr r switches m X n



How Clos networks become nonblocking

 Adjacent layers of Clos are fully connected with each other

 if m > 2n — 2, then the Clos network is strict-sense nonblocking
 Cost: you need more output ports than input ports

* That is, any new demand between any pair of free (input,
output) ports can be satisfied without re-routing any of the
existing demands.



At most n-1 existing demands

Need at most (n-1)+(n-1) middle stage

nXm rXr m X n
{ nXm |[— rXr — mXn [—
nXm — rXr — m X n —

r switchesn X m m switchesr Xr r switches m X n
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Surprising result about Clos networks

* if m >= n, then the Clos network is rearrangeably nonblocking

* Any new demand between a pair of free (input, output) ports
can be satisfied by suitably re-arranging existing demands.

* Re-arranging == re-routing

* |t Is easy to see that m >= n is necessary
* The surprising part is that m >= n is sufficient
* Intuition: matching in a fully connected bipartite graph



Rearrangeably nonblocking Clos built with
identical switches: n2Xn? using 3n nXn

nXn nXxXn nXn
nXn — nXn — nXn —
nXn — nXn — nXn —

n switches n X n n switches n X n n switches n X n



What about re-routing?

* How to rearrange existing demands when a new packet arrives,
so that it can get across as quickly as possible?

* |deally, do it without “interference” to (i.e.: rerouting) other pkts
* In general, it is not possible. Packets must wait, adding to delays.

 But, doable with high probability based on the input traffic
workload: if packets are “randomly shuffled” across output ports

» Valiant Load Balancing



Valiant Load Balancing (VLB)

« Suppose you had many paths to get to a destination

» Key idea: pick a random node to redirect a message to from the
source, then follow a deterministically-chosen shortest path to the
destination from there

» Guarantee: With high probability, the message reaches its
destination “very quickly” without blocking (log n steps in a n-
hypercube)

* Practically, this means close to zero queueing delays in switch
« Randomized algorithms can be powerful.



VLB and Clos

* VLB is more general than Clos
* It is a form of oblivious routing
* e.g., N0 need to measure traffic patterns before choosing routes
« Extremely simple to implement: no global state

* VLB is handy in Clos topologies due to the numerous
options to pick the intermediate layer switch
» Balance load across many paths

* Very beneficial in practice

 “Performance isolation:” other port — port flows don’t matter
* High capacity (“bisection bandwidth”) between two ports



