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RMT: Match-Action Table memory design
• Match and Action units supplied with the Packet Header Vector
• Each stage accesses its own memory containing tables

• RMT uses a crossbar to pick PHV fields for matching against 
contents of SRAM/TCAM banks
• Flexible key generation for lookup

• Distinction from fixed-function:
• User-programmed fields stored in table
• PHVs include user-programmed fields
• Table match keys chosen by users
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RMT: Match-Action Table memory design
• Entry looked up in the memory (SRAM/TCAM) contains a 

pointer to the instruction (action) for that entry

• Instructions implemented through programmable ALUs
• More general ALUs than fixed-function hardware devices

• Feasible since compute components “cheap” inside a router
• VLIW: operate on multiple headers simultaneously

• Entry also contains pointers to:
• Action data (e.g., output port), 
• statistics (counters), if needed

PHV
ALUs



Achieving reconfigurable match-action

L2 PHV

Separately configurable and addressable memory blocks is the 
key to using tables flexibly. Independent block level access

VS.

Fixed-function matching Flexible match function

Each table in a match-action stage may use a different crossbar 
configuration to extract a different set of fields from the PHV

T1 T1 T2 T3L2 L2 L2 L2 L2

Different memory banks can contain entries for different tables 
(e.g., IPv4 matching, virtualization, …)

Cost: 14% 
extra area 
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for fatter 

wires



Memory layout and use matters
• Flexible partitioning of memory across SRAM and TCAM
• Fixed size memory blocks: internal fragmentation
• Deterministic access times
• All of it is SRAM or TCAM

• Interesting compiler concerns
• “Packing” tables
• Within & across pipeline stage
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tables. In this example, a routing algorithm runs in each and every router and both 
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with 
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages 
containing routing information according to a routing protocol! We’ll cover routing 
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can 
be further illustrated by considering the hypothetical (and unrealistic, but technically 
feasible) case of a network in which all forwarding tables are configured directly by 
human network operators physically present at the routers. In this case, no routing 
protocols would be required! Of course, the human operators would need to interact 
with each other to ensure that the forwarding tables were configured in such a way 
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have 
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd   309 11/02/16   3:14 PM

1

2

0111

values in arriving 
packet header

3

Data plane
per-packet processing
(~ tens of 
nanoseconds)

Control plane
per route-change 
processing
(~ a few seconds)

Who programs the rules? Control plane



Distributed control planes
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Software-defined network (SDN)
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SDN (1/2): Centralized control plane
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SDN (2/2): Open interface to data plane 
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Packet after route lookup
• What we have after lookup and modifications:
• One or more output ports, or a decision to drop
• packet headers, possibly modified from ingress

• Goal: reconstitute the headers with payload and send the 
packet out of one or more output ports

• Move the packet (header) to output through the switching fabric



Building a high-speed 
switching fabric



A single (n X m)-port switching fabric
• Different designs of switching fabric possible
• Assume n ingress ports and m egress ports, half duplex links



A single (n X m)-port switching fabric
• We want a design such that:

• Any port can connect to any other 
directly if all other ports free

• Nonblocking: if input port x and output 
port y are both free, they should be 
able to connect
• Regardless of other ports being 

connected.
• If not satisfied, switch is blocking.

Electrical/mechanical/
electronic crossover



Nonblocking designs are nontrivial

Two aspects: topology and routing



High port density + nonblocking == hard!
• Low-cost nonblocking crossbars are feasible for small # ports

• However, it is costly to be nonblocking with many ports

• If each crossover is as fast as each input port, 
• Number of crossover points == n * m
• Cost grows quadratically on the number of input ports

• Else, crossover must transition faster than the port
• … so that you can keep the number of crossovers small



Nonblocking switches with many ports
• Key principle: Build a fast, nonblocking switch with many ports 

using many fast, nonblocking switches with a small number of 
ports.

• How to build large nonblocking switches?
• The subject of interconnection networks
• https://en.wikipedia.org/wiki/Multistage_interconnection_networks

https://en.wikipedia.org/wiki/Multistage_interconnection_networks


3-stage Clos network (r*n X r*n ports)
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How Clos networks become nonblocking
• Adjacent layers of Clos are fully connected with each other

• if m > 2n – 2, then the Clos network is strict-sense nonblocking 
• Cost: you need more output ports than input ports

• That is, any new demand between any pair of free (input, 
output) ports can be satisfied without re-routing any of the 
existing demands.



Need at most (n-1)+(n-1) middle stage
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Surprising result about Clos networks
• if m >= n, then the Clos network is rearrangeably nonblocking

• Any new demand between a pair of free (input, output) ports 
can be satisfied by suitably re-arranging existing demands.
• Re-arranging == re-routing

• It is easy to see that m >= n is necessary
• The surprising part is that m >= n is sufficient
• Intuition: matching in a fully connected bipartite graph



Rearrangeably nonblocking Clos built with 
identical switches: n2Xn2 using 3n nXn
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What about re-routing?
• How to rearrange existing demands when a new packet arrives, 

so that it can get across as quickly as possible?

• Ideally, do it without “interference” to (i.e.: rerouting) other pkts
• In general, it is not possible. Packets must wait, adding to delays.

• But, doable with high probability based on the input traffic 
workload: if packets are “randomly shuffled” across output ports
• Valiant Load Balancing



Valiant Load Balancing (VLB)
• Suppose you had many paths to get to a destination
• Key idea: pick a random node to redirect a message to from the 

source, then follow a deterministically-chosen shortest path to the 
destination from there
• Guarantee: With high probability, the message reaches its 

destination “very quickly” without blocking (log n steps in a n-
hypercube)
• Practically, this means close to zero queueing delays in switch
• Randomized algorithms can be powerful.



VLB and Clos
• VLB is more general than Clos
• It is a form of oblivious routing
• e.g., no need to measure traffic patterns before choosing routes
• Extremely simple to implement: no global state

• VLB is handy in Clos topologies due to the numerous 
options to pick the intermediate layer switch
• Balance load across many paths

• Very beneficial in practice
• “Performance isolation:” other port – port flows don’t matter
• High capacity (“bisection bandwidth”) between two ports


