
Network

Life of a packet in a hardware router

… …
Switching

fabric

Input port

Input port

Input port

Output port

Output port

Output port

Line
Termination Parsing Lookup &

Modification
Buffering &
Scheduling

Line
Termination

(Match-Action) (Traffic
Management)

address

SRAM bank

data row

“SRAM port”

Pipelined Parallelism

Packet
Header
Vector

RMT: Match-Action Table memory design
• Match and Action units supplied with the Packet Header Vector
• Each stage accesses its own memory containing tables

• RMT uses a crossbar to pick PHV fields for matching against
contents of SRAM/TCAM banks
• Flexible key generation for lookup

• Distinction from fixed-function:
• User-programmed fields stored in table
• PHVs include user-programmed fields
• Table match keys chosen by users

PHV
+

xbar

Mem banks

RMT: Match-Action Table memory design
• Entry looked up in the memory (SRAM/TCAM) contains a

pointer to the instruction (action) for that entry

• Instructions implemented through programmable ALUs
• More general ALUs than fixed-function hardware devices

• Feasible since compute components “cheap” inside a router
• VLIW: operate on multiple headers simultaneously

• Entry also contains pointers to:
• Action data (e.g., output port),
• statistics (counters), if needed

PHV
ALUs

Achieving reconfigurable match-action

L2 PHV

Separately configurable and addressable memory blocks is the
key to using tables flexibly. Independent block level access

VS.

Fixed-function matching Flexible match function

Each table in a match-action stage may use a different crossbar
configuration to extract a different set of fields from the PHV

T1 T1 T2 T3L2 L2 L2 L2 L2

Different memory banks can contain entries for different tables
(e.g., IPv4 matching, virtualization, …)

Cost: 14%
extra area
(& power)
for fatter

wires

Memory layout and use matters
• Flexible partitioning of memory across SRAM and TCAM
• Fixed size memory blocks: internal fragmentation
• Deterministic access times
• All of it is SRAM or TCAM

• Interesting compiler concerns
• “Packing” tables
• Within & across pipeline stage

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header

3

Data plane
per-packet processing
(~ tens of
nanoseconds)

Control plane
per route-change
processing
(~ a few seconds)

Who programs the rules? Control plane

Distributed control planes

Data plane

Data plane

Data plane

Data plane

Control plane

Control plane

Control plane

Control plane

Software-defined network (SDN)

Data plane

Data plane

Data plane

Data plane

Logically-centralized control plane

SDN (1/2): Centralized control plane

Data plane

Data plane

Data plane

SDN controller

Data plane

Control planes lifted from switches
into a logically centralized controller

SDN (2/2): Open interface to data plane

Data plane

Data plane

Data plane

SDN controller

Data plane

Packet after route lookup
• What we have after lookup and modifications:
• One or more output ports, or a decision to drop
• packet headers, possibly modified from ingress

• Goal: reconstitute the headers with payload and send the
packet out of one or more output ports

• Move the packet (header) to output through the switching fabric

Building a high-speed
switching fabric

A single (n X m)-port switching fabric
• Different designs of switching fabric possible
• Assume n ingress ports and m egress ports, half duplex links

A single (n X m)-port switching fabric
• We want a design such that:

• Any port can connect to any other
directly if all other ports free

• Nonblocking: if input port x and output
port y are both free, they should be
able to connect
• Regardless of other ports being

connected.
• If not satisfied, switch is blocking.

Electrical/mechanical/
electronic crossover

Nonblocking designs are nontrivial

Two aspects: topology and routing

High port density + nonblocking == hard!
• Low-cost nonblocking crossbars are feasible for small # ports

• However, it is costly to be nonblocking with many ports

• If each crossover is as fast as each input port,
• Number of crossover points == n * m
• Cost grows quadratically on the number of input ports

• Else, crossover must transition faster than the port
• … so that you can keep the number of crossovers small

Nonblocking switches with many ports
• Key principle: Build a fast, nonblocking switch with many ports

using many fast, nonblocking switches with a small number of
ports.

• How to build large nonblocking switches?
• The subject of interconnection networks
• https://en.wikipedia.org/wiki/Multistage_interconnection_networks

https://en.wikipedia.org/wiki/Multistage_interconnection_networks

3-stage Clos network (r*n X r*n ports)

…

n X m
…

n X m
…

n X m
…

…

r switches n X m

…

m X n
…

m X n
…

m X n
…

…

r switches m X n

…

r X r
…

r X r
…

r X r
…

…

m switches r X r

How Clos networks become nonblocking
• Adjacent layers of Clos are fully connected with each other

• if m > 2n – 2, then the Clos network is strict-sense nonblocking
• Cost: you need more output ports than input ports

• That is, any new demand between any pair of free (input,
output) ports can be satisfied without re-routing any of the
existing demands.

Need at most (n-1)+(n-1) middle stage

…

n X m
…

n X m
…

n X m
…

…

r switches n X m

…

m X n
…

m X n
…

m X n
…

…

r switches m X n

…

r X r
…

r X r
…

r X r
…

…

m switches r X r

At
 m

os
t n

-1
 e

xi
st

in
g

de
m

an
ds

Surprising result about Clos networks
• if m >= n, then the Clos network is rearrangeably nonblocking

• Any new demand between a pair of free (input, output) ports
can be satisfied by suitably re-arranging existing demands.
• Re-arranging == re-routing

• It is easy to see that m >= n is necessary
• The surprising part is that m >= n is sufficient
• Intuition: matching in a fully connected bipartite graph

Rearrangeably nonblocking Clos built with
identical switches: n2Xn2 using 3n nXn

…

n X n
…

n X n
…

n X n
…

…

n switches n X n

…

n X n
…

n X n
…

n X n
…

…

n switches n X n

…

n X n
…

n X n
…

n X n
…

…

n switches n X n

What about re-routing?
• How to rearrange existing demands when a new packet arrives,

so that it can get across as quickly as possible?

• Ideally, do it without “interference” to (i.e.: rerouting) other pkts
• In general, it is not possible. Packets must wait, adding to delays.

• But, doable with high probability based on the input traffic
workload: if packets are “randomly shuffled” across output ports
• Valiant Load Balancing

Valiant Load Balancing (VLB)
• Suppose you had many paths to get to a destination
• Key idea: pick a random node to redirect a message to from the

source, then follow a deterministically-chosen shortest path to the
destination from there
• Guarantee: With high probability, the message reaches its

destination “very quickly” without blocking (log n steps in a n-
hypercube)
• Practically, this means close to zero queueing delays in switch
• Randomized algorithms can be powerful.

VLB and Clos
• VLB is more general than Clos
• It is a form of oblivious routing
• e.g., no need to measure traffic patterns before choosing routes
• Extremely simple to implement: no global state

• VLB is handy in Clos topologies due to the numerous
options to pick the intermediate layer switch
• Balance load across many paths

• Very beneficial in practice
• “Performance isolation:” other port – port flows don’t matter
• High capacity (“bisection bandwidth”) between two ports

