
Network

What’s in a router?

Bottleneck
queue

(max size B)

Queuing delay

Flows
Packet-switched core network

Link rate

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header

3

Data plane
per-packet processing
(~ tens of
nanoseconds)

Control plane
per route-change
processing
(~ a few seconds)

Control & Data Planes inside a router

Hardware Router overview

… …
Switching

fabric

Input port

Input port

Input port

Output port

Output port

Output port

Line
Termination Parsing Lookup &

Modification
Buffering &
Scheduling

Line
Termination

(Match-Action) (Traffic
Management)

Study 2 designs
• Historically evolving, multiple concurrent router designs

• 2 exemplars:
• MGR: router from the late 1990s (50Gbit/s router, Partridge et al)
• RMT: router from the late 2010s

Life of a Packet

(2) Packet parsing
• Dividing a sentence into its grammatical parts:
• “I ate an apple”
• Sentence := Subject (I) Verb (ate) Object (an apple)
• Object:= Article (an) Noun (apple)

• Packet parsing: dividing sequence of bits into header fields
• 1100100101011
• è ethernet destination (1100) | source (1001) | ethertype (01) | …
• Unlike parsing English, parsing packets is quite mechanical
• Series of extractions and branches to assign fields to packet bits

• Parsing could be implemented in software (MGR) or hardware
(RMT)

(2) Packet parsing
• A key principle: Separate header and payload data paths
• Router functionality is “header-heavy” but “payload-light”
• Don’t move the payload around too much
• Conserve bandwidth & resources for data moved inside the router

• Header goes on as input to route lookup/packet modification
• Payload sits on a buffer until router knows what to do with pkt
• Buffer could be on the ingress line card (MGR) or a buffer shared

between line cards (RMT)

Parsing state machine
• Parsing is an inherently sequential

process
• Previous header determines the

next header type
• Current header length determines

the start of the next header
• Parser state: tracks the current

header and its length
• Help jump to the next state

Source: Design principles for packet parsers, Gibb et al.

A hardware (fixed function) parser
• Two steps:

• Header identification:
Identify sequence of
headers
• Extract fields from

identified headers to
send to matching
components of tables
• Design digital circuits

with a high clock rate?

(Fixed function) header identification
• Identify headers

through fixed-function
header processors
• Simple design: extract

one header per clock
cycle
• Speculate to extract

multiple headers/cycle
• Sequence resolution

picks one

(Fixed function) field extraction

• Extract fields using fixed
offsets into the packet,
depending on parser state

• Field-extraction table is
hard-coded for specific
fields and protocols
• E.g., IPv4 length: always at

bytes 3 & 4

RMT makes parsing programmable
• Parse graph: Representation of all valid header sequences you

expect

Programmable parser
• Reprogrammable TCAM allows us

to identify headers based on the
protocol parse graph

• Reprogrammable SRAM contains
the protocol-dependent field
extractions:
• e.g., IPv4, byte 8 à TTL, 12—15 à

IPv4 source address, etc.
• Extracting the next header & length

is a special case of generic field
extractions for each protocol

Output of programmable parser
• Vector of extracted packet fields and labels. Example:
• Ethernet -> src: 1010..; dst: 0101…; ethertype: IPv4
• IPv4 -> version: …; …
• … <other headers>

• Termed the packet header vector (PHV)

• Fed into the packet lookup and modification engines

(3) Packet Lookup & Modification
• The main job of a router is to forward packets to the correct output

port(s)
• Typically done by looking up a table of entries that were pre-

computed by the control plane
• Look-up tables with a range of sizes (# entries), widths (headers)
• Packets may also need to be modified
• RFC 1812 TTL decrement, recompute IP checksum, MAC rewrite, …
• Virtualized public cloud: encap/decap headers

• Outcome: a (set of) output ports + (possibly modified) headers

Typical table structures
• Sequence of tables: L2, L3, ACL
• Ethernet (L2) headers to forward packets within one IP network
• IP (L3) headers to forward packets across IP networks
• Access control lists (ACL) to implement firewalls & other policies
• Different kinds of lookups possible:
• Exact match
• Longest prefix match
• Wildcard match

Packet lookup in MGR
• A forwarding engine card separate from line cards
• Scale forwarding and interface capacity separately

• Software: Use Alpha 21164 (a 415MHz generic processor)
• Programmed in assembly to do route lookup and other

processing.
• Many optimizations to improve performance
• Need for such optimizations continues today for software

MGR Software lookup performance
• Separate fast path from slow path (optimize the common case)
• ARP lookup, fragmentation, error handling

• Try to fit all code into the processor instruction cache
• Heavily use caching for table entries across different memories

in a hierarchy
• Traffic locality: a small fast memory can service “most” traffic

• Two copies of table in external memory to support downtime-
less updates to the forwarding table
• However, can’t guarantee deterministic throughput for packets
• Packet might access slower memories in the memory hierarchy

Packet lookup in RMT: Pipelined
parallelism
• Different functionalities (ex: L2, L3) in different table stages
• Highly parallel over packets: admit 1 packet/cycle
• Pipeline circuitry clocked at a high rate: ex: RMT@1 GHz
• Deterministic throughput

Traditional pipelined hardware: fixed-
function (Multiple Match-Action Tables)

Fixed Parser
Fixed Header Processing Pipeline

L2
 T

ab
le

IP
v4

 T
ab

le

IP
v6

 T
ab

le

AC
L

Ta
bl

e

L2
 H

dr
 A

ct
io

ns

v4
 H

dr
 A

ct
io

ns

v6
 H

dr
 A

ct
io

ns

AC
L

Ac
tio

ns

MMT isn’t enough!
• Operators want new protocols and services
• Virtualization and the cloud
• VMs have their own address space (e.g., 10.0.x.x)
• Physical networks route traffic using a different set of addresses

(e.g., 128.6.x.x)
• Keep them separate so you can place VMs wherever you can
• Need: dedicated new packet headers to use for forwarding within

the “core” fabric of the network
• E.g., VXLAN, NVGRE

• Research experimentation and domain-specific headers
• E.g., finance; university campuses; network feedback signals

MMT isn’t enough!
• Want to use table memory flexibly
• Different environments need tables of different shapes and sizes

• Enterprises: ACL-heavy (“students can see information sent to
other students from professors, but cannot see info from
professors to printers”)
• Tier-1 ISP like ATT: L3-heavy (~1 million Internet IPv4 prefixes)
• Static table sizes don’t work well
• Can’t use another table’s memory, even if it is empty
• Heterogenous devices to support different scenarios: complexity
• Even device for a specific market may have insufficient resources

MMT isn’t enough!
• All of this might be supported if switch hardware can be

upgraded as often as software in general (e.g., on smartphone)

• Unfortunately, the reality is very far from it:
• Each device generation hardware upgrade: 3--5 years
• New ASIC design, verification, fabrication, testing

• Even software upgrades take time:
• Features requested by other customers stand in the way of

releasing new feature that one customer wants

RMT: Protocol Independent Switch Arch
Stages of Match-Action Tables

Memory ALU

Programmable
Parser

(Gibb et al,
ANCS’13)

Programmable Match-Action Pipeline
(RMT, SIGCOMM’13)

Programmable
scheduler

(PIFO,
SIGCOMM’16)

To egress
pipeline

A primer on high-speed memories
• Computers have different kinds of memory
• Fastest caches (L1, L2, …) made of SRAM
• Fast main memory made of DRAM
• Storage (HDD) made of magnetic disks, tape, SSDs, and so on
• Translation Lookaside Buffer (TLB) with CAM/TCAM

• Today’s high-speed routers use SRAM and TCAM
• Static Random Access Memory for exact match
• Ternary Content Addressable Memory for wildcard ACL match

(also longest prefix match)

SRAM principles of operation
• Memory is organized into banks
• Each bank can be independently accessed

through an address
• Data in the memory row at the address can

be read/written each clock cycle
• Banks of larger sizes are denser (fewer

wires to run), but you can only read/write
one data row per bank per clock cycle
(reduced parallelism)
• Looking up (ex: IPv4 dst) involves

computing address(es) & reading mem

address

SRAM bank

data row

address

address

TCAM principles of operation
• Banks are accessed using content, not

addresses (CAM)
• Contents of the memory are ternary:

values can be 0, 1, or x (don’t care)
• Incoming keys are matched against

TCAM, with any bit accepted at the
location of the wildcard bits
• Ternary logic is power- and area-hungry

relative to SRAM

0101

TCAM bank

data row

content

content

0xx1

