
Transport

Packet scheduling

Bottleneck
queue

(max size B)

Queuing delay

Flows
Packet-switched core network

Link rate

Packet Scheduling Algorithms

Which packet to send next? (order)
When to send the next packet? (timing)

Used to isolate flows from each other by giving each a fixed
data rate through a link

Three commonly used terms:
• (long term) average rate: how many pkts can be sent per unit

time (in the long run)
• crucial question: what is the interval length? 100 packets per sec or 6000 packets

per min have same average, but instantaneous behaviors can be very different

• peak rate: e.g., 6000 pkts per min (ppm) avg.; 1500 ppm peak
rate
• (max.) burst size: max number of pkts sent consecutively (with

no intervening idle)
4

Providing Isolation through Rate Limiting

Shaping and Policing

token bucket: limit input flow to specified burst size and average rate
• Tokens generated at rate r tokens/sec, put into bucket
• Bucket can hold b tokens. Tokens are not added if bucket is full
• A packet can be transmitted successfully if a token is available
• Packet “picks up” the token as it leaves the router

• Over interval of time t:
number of packets that leave the token
bucket is less than or equal to (r * t + b)
Average rate r
Burst size b

6

Token Bucket

Purpose of the bucket
• Suppose each flow starts with a “full” bucket (b tokens)

• Bucket of tokens enables small bursts to go through unscathed

• Short flows (bursts) can exceed rate limit r, since they can use up
the reserve in the bucket

• Long flows will fit into the rate limit r over their lifetime, since they
cannot exceed the average token-filling rate r after using up the
reserve

Token Bucket Shaper vs. Policer
• Shaper: there is a bucket for tokens and a packet buffer hold

packets waiting for tokens
• Packets will be delayed if the buffer can hold the packet
• Dropped when the buffer is full

• A token bucket policer doesn’t contain the packet buffer:
• a packet arriving while the bucket is empty is dropped right away

Token Buckets are simple to implement
• Assume byte-based rates. Each time a packet from a flow

arrives, refill tokens according to gap in time and bucket size

tokens += r * time since last packet of flow
tokens = min(tokens, b)

• Need enough tokens to dequeue a packet: tokens >= pkt_size
• When a packet departs, remove tokens: tokens -= pkt_size

• Small per-flow state: r, b, timestamp, current # of tokens
• Used to build more complex metering like TR-TCM (RFC 2698)

The Internet uses token
bucket policers at several
bottleneck links.

Impact of Token Bucket Policers

Flach et al., An Internet-Wide Analysis of Traffic Policing, SIGCOMM 2016

Impact on TCP

Policing losses impact applications
• Video rebuffer rate: rebuffer time / overall watch time

Flach et al., An Internet-Wide Analysis of Traffic Policing, SIGCOMM 2016

Transport topics we didn’t consider
• Multipath transport

• Network utility maximization

Network Data Plane

Link layer

Network

Transport

Applications

The Internet

Link layer

Network

Transport

Applications

The Internet

Packet takes on
headers (metadata)

at each layer

Packet starts as an
app “payload”

Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications

Link layer

Network

Link layer

Network

Routing
Algorithm

Traditionally,
Distributed
Control:
Individual
routing
algorithm
components in
every router
interact in the
control plane

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

18

1

2

0111

values in arriving
packet header

3

Data plane
per-packet processing
(~ tens of
nanoseconds)

Control plane
per route-change
processing
(~ a few seconds)

Control & Data Planes inside a router

Router Design: Requirements

1. Speed: move packets quickly

 1

 10

 100

 1000

 10000

 2004 2008 2012 2016 2020
 1

 10

 100

S
w

itc
h
 s

p
e
e
d
 (

G
b
it/

s)

C
P

U
 c

lo
ck

 r
a
te

 (
G

H
z)

Year

Brcm 5670

Scorpion

Trident

Trident 2

Tomahawk

Barefoot

Tomahawk 3

Prescott Nehalem
Sandybridge Skylake

Coffee lake

(1) Inherently
parallel workload; speed up
through hardware
parallelism

(2) Physical
communication
technologies (e.g., optical)
not bound by
semiconductor speed

INTERNET

Servers

Fabric

2. High port density, low power & area

3. Make routers follow top-level intent
• Cloud era: special challenges
• Scale: don’t want to configure manually
• Multiple kinds of addressing
• Telemetry

• Expressiveness:
• Routing with global/centralized goals
• Functions beyond simple forwarding:

• access control, in-network computing, perf debugging, …
• Scheduling policy

• Focus on programmability and observability

3.5 Standard router specifications
• RFC 1812: Forward pkts using a table lookup, but also …
• Update TTL (time-to-live IP header field): ttl -= 1
• Update IP checksum (TTL updated)
• IP to link-layer translation across networks (e.g., ARP for dst)
• Rewrite link layer source address
• Special processing (IP options): source route, record route, …
• Handle IPv4 packet fragmentation
• Handle multicast packets
• Maintain QoS assurances

What’s in a router?

Bottleneck
queue

(max size B)

Queuing delay

Flows
Packet-switched core network

Link rate

Overview of router functionality
• Historically evolving, multiple concurrent router designs
• 2 exemplars:
• MGR: router from the late 1990s (50Gbit/s router, Partridge et al)
• RMT: router from the late 2010s

• Many things in common. Some functions implemented:
• Packet receive/transmit from/to physical interfaces
• Packet and header parsing
• Packet lookup and modification: ingress & egress processing
• High-speed switching fabric to connect interfaces
• Traffic management: Scheduling & Buffer Management

Life of a Packet

(1) Receive data at line cards
• Circuitry to interface with physical medium: copper, optical, …
• SerDes/IO modules: serialize/deserialize data from the wire

• Network interfaces keep getting faster
• More parallelism, but stay the same size; Moore’s law is alive for now
• Link technologies still getting faster: optical & wireless

• Multiple network interfaces on a single “line card”
• Component detachable from the rest of the switch
• Ex: upgrade multiple 10 Gbit/s interfaces to 40 Gbit/s in one shot

(2) Packet parsing
• Extract header fields: extraction & branching, sometimes “loop”
• Example: extract Ethernet headers to know src/dst hw addresses
• Example: determine transport protocol based on IP proto field
• Example: encapsulation, e.g., IPv6 in IPv4
• Outcome: assignment of header fields to bits from packet
• MGR: software, RMT: hardware (programmable)

(2) Packet parsing
• A key principle: Separate header and payload data paths
• Router functionality is “header-heavy” but “payload-light”
• Don’t move the payload around too much
• Conserve bandwidth & resources for data moved around inside the

router
• Header goes on as input to route lookup/packet modification
• Payload sits on a buffer until router knows what to do with pkt
• Buffer could be on the ingress line card (MGR) or a buffer shared

between line cards (RMT)

