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Packet scheduling

(max size B)

Packet-switched core network



Packet Scheduling Algorithms

Which packet to send next? (order)
When to send the next packet? (timing)



Providing Isolation through Rate Limiting

Used to isolate flows from each other by giving each a fixed
data rate through a link

Three commonly used terms:

* (long term) average rate: how many pkts can be sent per unit
time (in the long run)

« crucial question: what is the interval length? 100 packets per sec or 6000 packets
per min have same average, but instantaneous behaviors can be very different

* peak rate: e.g., 6000 pkts per min (ppm) avg.; 1500 ppm peak
rate

* (max.) burst size: max number of pkts sent consecutively (with
no intervening idle)
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Shaping and Policing

Enforces rate by dropping excess packets immediately
— Can result 1n high loss rates

Policing + Does not require memory buffer
+ No RTT inflation
Enforces rate by queueing excess packets
. + Only drops packets when buffer 1s full
Shaping

— Requires memory to buffer packets
— Can inflate RTTs due to high queueing delay




Token Bucket

token bucket: limit input flow to specified burst size and average rate
» Tokens generated at rate r tokens/sec, put into bucket
* Bucket can hold b tokens. Tokens are not added if bucket is full

* A packet can be transmitted successfully if a token is available
» Packet “picks up” the token as it leaves the router

* Over interval of time t: -
number of packets that leave the token %

bucket holds up to
b tokens

bucket is less than or equal to (r *t + b)

Average rate r packets  token], Aomove
] T wait [T token :etf/(\?ork
Burst size b 6




Purpose of the bucket

» Suppose each flow starts with a “full” bucket (b tokens)
* Bucket of tokens enables small bursts to go through unscathed

« Short flows (bursts) can exceed rate limit r, since they can use up
the reserve in the bucket

* Long flows will fit into the rate limit r over their lifetime, since they
cannot exceed the average token-filling rate r after using up the
reserve



Token Bucket Shaper vs. Policer

» Shaper: there is a bucket for tokens and a packet buffer hold
packets waiting for tokens

» Packets will be delayed if the buffer can hold the packet
* Dropped when the buffer is full

* A token bucket policer doesn’t contain the packet buffer:
* a packet arriving while the bucket is empty is dropped right away



Token Buckets are simple to implement

« Assume byte-based rates. Each time a packet from a flow
arrives, refill tokens according to gap in time and bucket size

tokens += r * time since last packet of flow
tokens = min(tokens, b)

* Need enough tokens to dequeue a packet: tokens >= pkt_size
 When a packet departs, remove tokens: tokens -= pkt_size

« Small per-flow state: r, b, timestamp, current # of tokens
» Used to build more complex metering like TR-TCM (RFC 2698)



The Internet uses token
bucket policers at several
bottleneck links.



Impact of Token Bucket Policers

Region Policed segments Loss rate
(among lossy) (overall) (policed) (non-pol.)

India 6.8% 1.4% 28.2% 3.9%
Africa 6.2% 1.3% 2'7.5% 4.1%
Asia (w/o India) 6.5% 1.2% 22.8% 2.3%
South America 4.1% 0.7% 22.8% 2.3%
Europe 5.0% 0.7% 20.4% 1.3%
Australia 2.0% 0.4% 21.0% 1.8%
North America 2.6% 0.2% 22.5% 1.0%

Table 2: % segments policed among lossy segments (> 15
losses, the threshold to trigger the policing detector), and over-
all. Avg. loss rates for policed and unpoliced segments.

Flach et al., An Internet-Wide Analysis of Traffic Policing, SIGCOMM 2016



Impact on TCP
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Figure 1: TCP sequence graph for a policed flow: (1 and 4)
high throughput until token bucket empties, (2 and 5) multiple
rounds of retransmissions to adjust to the policing rate, (3) idle
period between chunks pushed by the application.



CDF

Policing losses impact applications

* Video rebuffer rate: rebuffer time / overall watch time
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Figure 9: Rebuffer to watch time ratios for video playbacks. Each had at least one chunk with a goodput of 300 kbps, 1.5 Mbps, or
3 Mbps (£15%).

Flach et al., An Internet-Wide Analysis of Traffic Policing, SIGCOMM 2016



Transport topics we didn’t consider
* Multipath transport

* Network utility maximization



Network Data Plane
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Control & Data Planes inside a router

Traditionally,
Distributed
Control plane (>=<> = Control:
per route-change :‘/'Q N Individual
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Router Design: Requirements



1. Speed: move packets quickly
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2. High port density, low power & area

Servers



3. Make routers follow top-level intent

* Cloud era: special challenges
» Scale: don’t want to configure manually |
 Multiple kinds of addressing '
* Telemetry

* EXpressiveness:
* Routing with global/centralized goals

* Functions beyond simple forwarding:
* access control, in-network computing, perf debugging, ...

« Scheduling policy
* Focus on programmability and observability




3.5 Standard router specifications

 RFC 1812: Forward pkts using a table lookup, but also ...

« Update TTL (time-to-live IP header field): ttl -= 1

« Update |IP checksum (TTL updated)

* |P to link-layer translation across networks (e.g., ARP for dst)
* Rewrite link layer source address

« Special processing (IP options): source route, record route, ...
* Handle IPv4 packet fragmentation
« Handle multicast packets

« Maintain QoS assurances

Requirements for IP Version 4 Routers



What’s in a router?

Queuing delay

Link rate

Ditleneck

Packet-switched core network



Overview of router functionality

* Historically evolving, multiple concurrent router designs

« 2 exemplars:
 MGR: router from the late 1990s (50Gbit/s router, Partridge et al)
 RMT: router from the late 2010s

» Many things in common. Some functions implemented:
* Packet receive/transmit from/to physical interfaces
» Packet and header parsing
» Packet lookup and modification: ingress & egress processing
 High-speed switching fabric to connect interfaces
* Traffic management: Scheduling & Buffer Management




Life of a Packet



(1) Receive data at line cards ﬁ}

« Circuitry to interface with physical medium: copper, optical, ...
« SerDes/IO modules: serialize/deserialize data from the wire

* Network interfaces keep getting faster
* More parallelism, but stay the same size; Moore’s law is alive for now
* Link technologies still getting faster: optical & wireless

» Multiple network interfaces on a single “line card”
« Component detachable from the rest of the switch
 Ex: upgrade multiple 10 Gbit/s interfaces to 40 Gbit/s in one shot



(2) Packet parsing

» Extract header fields: extraction & branching, sometimes “loop”

« Example: extract Ethernet headers to
« Example: determine transport protoco
« Example: encapsulation, e.g., IPv6 in

know src/dst hw addresses
based on IP proto field

Pv4

* Qutcome: assignment of header fields to bits from packet

 MGR: software, RMT: hardware (programmable)
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(2) Packet parsing

* A key principle: Separate header and payload data paths
* Router functionality is “header-heavy” but “payload-light”
* Don’t move the payload around too much
« Conserve bandwidth & resources for data moved around inside the
router
* Header goes on as input to route lookup/packet modification

« Payload sits on a buffer until router knows what to do with pkt

 Buffer could be on the ingress line card (MGR) or a buffer shared
between line cards (RMT)



