Transport

NNNNNNNNNNNNNNNNNNNNNNN

Where scheduling operates

(max size B)

Packet-switched core network

Transport and Scheduling

Ingress Queues Egress Queues
(first hop at NICs) (last hop at TORs)

G_EE}
U -

« 4

Packet Scheduling Algorithms

Which packet to send next? (order)
When to send the next packet? (timing)

A taxonomy

« Granularity of allocation
» Per-packet vs. per-flow vs bit-by-bit

* Pre-emptive vs. non-pre-emptive

* Do you interrupt the current packet/flow if another shows up?

« Size-aware vs. unaware
* Do you consider flow or packet sizes in scheduling?

 Class-based (strict priority) vs. shared
» Are some flows strictly higher priority than others?

* Work-conserving vs. nhon-work-conserving
* Do you always use spare link capacity when there is demand?

* Metrics
» Efficiency (completion, response); fairness; resource limiting

Examples of scheduling &

* First-In-First-Out (FIFO) over packets

* Round-robin over packets of different flows
G, B,Y, G, B, Y, etc. regardless of arrival order

« Shortest Remaining Processing Time (SRPT)
* Flow-size-aware allocation which strictly prioritizes short flows

 Variant: shortest flow first i.e., only consider (initial) remaining
processing time

* (note: it’s possible for a flow-size-unaware variant to predict
remaining processing time using a known flow size distribution)

Examples of scheduling algorithms (2/N)

* Processor sharing
« Assume each flow gets a fair share of the link every unit of time
* Ideal: each flow starts receiving service immediately upon arrival

 Rate limiting
* Non-work-conserving: flow can’t send even if more demand than limit

 Class-based strict prioritization
* Pre-determined flow classes with strict priorities over each other
* Starve low priority flows if higher priority flows are always sending

Examples of scheduling algorithms (3/N)

 Hierarchical policies
» Arrange scheduling policies in a tree-hierarchy

« Example:
« Rate-limit A + B
 Fair-share among A and B within limit
* Fair-share among A+B and C

« Complex multi-tenant isolation policies A B
* E.g., amazon AWS

There’s no one (size-unaware) optimal

schedulin
rowt | s T G The best policy depends on the

SR distribution of flows in the workload.
N Suppose we consider the metric of
— average completion time of flows.

A FIFO

|

O | e e] -
[y

1

S 11 12 1 567 12
Workload adaptive flow scheduling, Faisal et al. CoNEXT 2018

There’s no one (size-unaware) optimal
scheduling

Flow ID Size Class Mul“pleX'ng Serlallzatlon
F1 1 1 :
— i) . Av0|d_s HOL Reduce§ flow
B o1 | 1 blocking completion
1 1 fime
s |2 @

A FIFO

S 11 12 1 567 12
Workload adaptive flow scheduling, Faisal et al. CoNEXT 2018

When does a flow complete?

» Consider a mix of “long” and “short” flows arriving at a Q
« Ex: A flow may have as few as 2 packets or as many as 10°

» Suppose a scheduling algorithm provides each flow:
* An average per-packet delay d (e.g., 50 ms)
» An average link bandwidth share t (e.g., 10 Mbit/s)

* Which among d & t determines
* when a short flow finishes?
* when a long flow finishes?

Fair Queueing

ACM SIGCOMM ‘89
Alan Demers, Srinivasan Keshav, and Scott Shenker

An ideal to emulate: Processor sharing

* Fair-share bandwidth in the most fine-grained fashion possible
« If there are N active flows, each flow gets 1/N'" of the link rate
* N varies as flows arrive and leave
* “Bit by bit round robin” (BR), also called processor-sharing

* Implementing BR directly on routers is unrealistic.
 Reason: downstream router has no metadata to route the bit

Emulate processor sharing?

« How about emulating PS with round robin over packets?
» Unfair! A flow can use larger packets and gain larger bandwidth

* Instead, determine when a packet would finish with BR

* Depends only on packet arrival time & # of active flows
 Let’s call this the virtual finish time

* FQ: Transmit packets in the order of the virtual finish times
» Buffer management: drop packet of flow with the largest backlog

Analysis and simulation of a fair queueing algorithm. Demers, Keshav, and Shenker

Round R (t) Packet size P
Ending round of a GPS packet I () = I (£g)t+ P

Using round numbers as timestamps: F o y— .a a
2=8;*+P,

S,*=MAX(F,_*, R(t,%))

Schedule the flow and (its earliest packet) with the
earliest finish time.

Finding the next flow: O(log N)

Hardware-friendly: Deficit Round Robin

« Set of queues iterated in order (O(1) next flow); fixed quantum
* Yet another approximation of BR: farther from it than WFQ

Round Robin
Pointer | Round Robin
‘ Pointer
Deficait '
Packet Queues Counte
750 [R

Deficit
i Packet Queues Cguggér
#1 |20 L 500
7 | N 1 120 750 300
— }
.2 |
500] | 42 500 500
600 100 | 0 .
43 200 i] 3 200 f 600 100 0
180] |
#4 | 50 b0
700 L] #a | 50 700 180 0
Quantum Slzi/// Quantum Size
——
[500__ 500

Efficient fair queueing using deficit round robin, Shreedhar and Varghese ‘95

Push in First Out

» Scheduling algorithms determine order and timing of packet

departures from a queue

* Typically, relative order of buffered packets doesn’t change

upon new packet arrivals

8

* Implement scheduling through a
structure (PIFO)

13

10

2)

9

7

5

2

—>

oriority-queue-based data

* Push-In: pkts have arbitrary ranks; push anywhere into queue
* First-Out: always dequeue from the head of the queue

Rate Limiting

Providing Isolation through Rate Limiting

Used to isolate flows from each other by giving each a fixed
data rate through a link

Three commonly used terms:

* (long term) average rate: how many pkts can be sent per unit
time (in the long run)

« crucial question: what is the interval length? 100 packets per sec or 6000 packets
per min have same average, but instantaneous behaviors can be very different

* peak rate: e.g., 6000 pkts per min (ppm) avg.; 1500 ppm peak
rate

* (max.) burst size: max number of pkts sent consecutively (with
no intervening idle)

19

Shaping and Policing

Enforces rate by dropping excess packets immediately
— Can result 1n high loss rates

Policing + Does not require memory buffer
+ No RTT inflation
Enforces rate by queueing excess packets
. + Only drops packets when buffer 1s full
Shaping

— Requires memory to buffer packets
— Can inflate RTTs due to high queueing delay

