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Simple models are useful
• Chiu and Jain’s model isn’t indicative of all TCP/AIMD behavior
• But it’s “realistic” enough
• Stands the test of time: many more sources, much higher 

bandwidth, …
• Models should be simple
• For us to work with
• For others to understand
• But they don’t have to mimic the “real” thing in every way

• A real, complex model is likely useless, but a realistic, simple 
model might teach us something 



Modeling TCP throughput
Given network characteristics, how quickly can TCP (New Reno) send data?
Mathis et al., “Macroscopic behavior of TCP congestion avoidance”



Steady AIMD

Mathis et al., “Macroscopic behavior of TCP congestion avoidance”

(Mathis equation)



Estimating TCP AIMD throughput
• Assumptions
• Single flow, repeating AIMD
• Loss occurs exactly in the last 

RTT before window reduction
• Exactly one packet lost

• Assume RTT constant (ignore 
queueing delay change)
• Relationship between W1, W2?
• How many pkts sent over T?
• Relationship p and # pkts?
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Time
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T

Packet drop probability p



Implications
• Throughput has a 1/sqrt(p) dependence on packet loss rate
• Getting full bottleneck throughput requires loss rate 1/(BDP)2

• RTT unfairness
• Flows with a smaller RTT get better throughput (ramp up faster)

• Engineering implications:
• Split TCP (CDNs, data center frontends, …)
• Special considerations for long-distance connections



Widely Deployed TCPs



Data Center TCP
Alizadeh et al.



Context
• Regular TCP: window evolution with all signals measured end 

to end

• Data centers: hardware under single administrative control
• Could network switches do better?

• What if switches provided better feedback than loss?
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Additive Increase: 
     W à W+1 per round-trip time
Multiplicative Decrease: 
     W à W/2 per drop or ECN mark

ECN Mark (1 bit)

Explicit Congestion Notification

Queue size > K, mark the packet.
Example of Active Queue Management

(RED, PI, etc.)



ECN set on the IP header by routers

Dropped by router if 
TCP sender is not 

ECN enabled
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     W à W+1 per round-trip time
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     W à W/2 per drop or ECN mark

ECN Mark (1 bit)

Explicit Congestion Notification

Receiver’s ACK echoes mark in TCP header



ECN on the TCP header



DCTCP: Main idea
• Extract multi-bit feedback from single-bit stream of ECN marks
• Reduce window size based on fraction of marked packets



ECN Marks TCP DCTCP
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TCP DCTCP

DCTCP: Main idea



Router side:
•  Mark packets when Queue Length > K.

Sender side:
• Maintain running average of fraction of packets marked (α).

                                                          

                                                                                        

• Adaptive window decreases:

• Note: decrease factor between 1 and 2.

B KMark Don’t 
Mark

 

each RTT :  F =
#  of marked ACKs
Total #  of ACKs
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DCTCP algorithm

Reacting to and 
controlling queue size 

distribution,
specifically, the region 

above K.



Setting protocol parameters
• When should router start marking? K:
• Mark too late: higher queueing delay (and maybe loss)
• Mark too early: queues too small, lose throughput
• Want min queue size > 0 even when TCP windows drop

• What is the ideal buffer size for DCTCP?
• Regular TCP: Bandwidth-delay product
• Want buffer > max queue size



Use model to set parameters
Packets sent in this 

RTT are marked

Time

(W*+1)(1-α/2)

W*

Window Size

W*+1 α =
# of pkts in last RTT of Period

# of pkts in Period



TCP Cubic



Support faster window growth

Wmax

Steady state 
operation

Max probing



TCP BBR
Cardwell et al., Google



Principle of Operation
• Find optimal operating point in terms 

of bottleneck bandwidth and delays

• Cannot simultaneously probe 
bottleneck bandwidth and 
propagation delay

•è Occasionally drop window to 
estimate propagation RTT



Endpoint algorithms alone are 
insufficient



The approach that the Internet takes to allocate 
resources in the network core is to use a 
distributed algorithm (congestion control) 
running at endpoints. 

However, it also places trust in endpoints.

This allows the Internet to scale to a large # of endpoints.



Uncooperative, buggy, malicious endpoints

• What if an endpoint is buggy, or malicious?

• We’d like the network core to do something better than best-effort



Simplified model of bottleneck link

Bottleneck 
queue

(max size B)

Queuing delay

Flows
Packet-switched core network

Link rate



FIFO scheduling + Tail-drop buffer mgmt
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FIFO scheduling + Tail-drop buffer mgmt
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Next RTT: ACK-clocking makes it worse
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ACK signals sender: prior packet left 
the network => resource available!



Network can be monopolized by bad 
endpoints
• ACK clocking synchronizes senders to when resource is available
• Conversely, packet losses desynchronize the sender

• Contending packet arrivals may not be random enough
• e.g., Blue flow can’t capture buffer space for a few round-trips

• Can observe this effect when many TCP flows compete
• Some TCP flows can never get off the ground

• A FIFO tail-drop queue incentivizes sources to misbehave



Packet scheduling disciplines @ routers
• Significantly influences how packets are treated regardless of 

the endpoint’s transmissions
• Implementations of Quality of Service (QoS) within large networks
• Implications for net neutrality debates

• Intellectually interesting and influential question
• Important connections to job scheduling in systems

• Just like in life, how you schedule work is highly impactful



Relationship: scheduling & transport
• Packet scheduling is dealing with things transport has already 

put into the network
• Transport requires a few round-trip times to react; scheduling 

does something “immediately”
• If you could schedule transmission out of the endpoint, you 

could get them to zoom through the network without waiting 
anywhere in queues
• In modern clusters, goal of transport is to often act as if a 

centralized scheduler directly chose the packet to transmit from 
the endpoint (leaving other packets waiting at the endpoint)


