
Transport

Simple models are useful
• Chiu and Jain’s model isn’t indicative of all TCP/AIMD behavior
• But it’s “realistic” enough
• Stands the test of time: many more sources, much higher

bandwidth, …
• Models should be simple
• For us to work with
• For others to understand
• But they don’t have to mimic the “real” thing in every way

• A real, complex model is likely useless, but a realistic, simple
model might teach us something

Modeling TCP throughput
Given network characteristics, how quickly can TCP (New Reno) send data?
Mathis et al., “Macroscopic behavior of TCP congestion avoidance”

Steady AIMD

Mathis et al., “Macroscopic behavior of TCP congestion avoidance”

(Mathis equation)

Estimating TCP AIMD throughput
• Assumptions
• Single flow, repeating AIMD
• Loss occurs exactly in the last

RTT before window reduction
• Exactly one packet lost

• Assume RTT constant (ignore
queueing delay change)
• Relationship between W1, W2?
• How many pkts sent over T?
• Relationship p and # pkts?

W1

W2

Time

Window

T

Packet drop probability p

Implications
• Throughput has a 1/sqrt(p) dependence on packet loss rate
• Getting full bottleneck throughput requires loss rate 1/(BDP)2

• RTT unfairness
• Flows with a smaller RTT get better throughput (ramp up faster)

• Engineering implications:
• Split TCP (CDNs, data center frontends, …)
• Special considerations for long-distance connections

Widely Deployed TCPs

Data Center TCP
Alizadeh et al.

Context
• Regular TCP: window evolution with all signals measured end

to end

• Data centers: hardware under single administrative control
• Could network switches do better?

• What if switches provided better feedback than loss?

Sender 1

Sender 2

Receiver

ECN = Explicit Congestion Notification

Time

W
in

do
w

 S
iz

e
(R

at
e)

Additive Increase:
 W à W+1 per round-trip time
Multiplicative Decrease:
 W à W/2 per drop or ECN mark

ECN Mark (1 bit)

Explicit Congestion Notification

Queue size > K, mark the packet.
Example of Active Queue Management

(RED, PI, etc.)

ECN set on the IP header by routers

Dropped by router if
TCP sender is not

ECN enabled

Sender 1

Sender 2

Receiver

ECN = Explicit Congestion Notification

Time

W
in

do
w

 S
iz

e
(R

at
e)

Additive Increase:
 W à W+1 per round-trip time
Multiplicative Decrease:
 W à W/2 per drop or ECN mark

ECN Mark (1 bit)

Explicit Congestion Notification

Receiver’s ACK echoes mark in TCP header

ECN on the TCP header

DCTCP: Main idea
• Extract multi-bit feedback from single-bit stream of ECN marks
• Reduce window size based on fraction of marked packets

ECN Marks TCP DCTCP

1 0 1 1 1 1 0 1 1 1 Cut window by 50% Cut window by 40%

0 0 0 0 0 0 0 0 0 1 Cut window by 50% Cut window by 5%

W
in

do
w

 S
iz

e
(B

yt
es

)

W
in

do
w

 S
iz

e
(B

yt
es

)

Time (sec) Time (sec)

TCP DCTCP

DCTCP: Main idea

Router side:
• Mark packets when Queue Length > K.

Sender side:
• Maintain running average of fraction of packets marked (α).

• Adaptive window decreases:

• Note: decrease factor between 1 and 2.

B KMark Don’t
Mark

each RTT : F =
of marked ACKs
Total # of ACKs

 Þ a¬ (1- g)a + gF

W ¬ (1- a
2
)W

DCTCP algorithm

Reacting to and
controlling queue size

distribution,
specifically, the region

above K.

Setting protocol parameters
• When should router start marking? K:
• Mark too late: higher queueing delay (and maybe loss)
• Mark too early: queues too small, lose throughput
• Want min queue size > 0 even when TCP windows drop

• What is the ideal buffer size for DCTCP?
• Regular TCP: Bandwidth-delay product
• Want buffer > max queue size

Use model to set parameters
Packets sent in this

RTT are marked

Time

(W*+1)(1-α/2)

W*

Window Size

W*+1 α =
of pkts in last RTT of Period

of pkts in Period

TCP Cubic

Support faster window growth

Wmax

Steady state
operation

Max probing

TCP BBR
Cardwell et al., Google

Principle of Operation
• Find optimal operating point in terms

of bottleneck bandwidth and delays

• Cannot simultaneously probe
bottleneck bandwidth and
propagation delay

•è Occasionally drop window to
estimate propagation RTT

Endpoint algorithms alone are
insufficient

The approach that the Internet takes to allocate
resources in the network core is to use a
distributed algorithm (congestion control)
running at endpoints.

However, it also places trust in endpoints.

This allows the Internet to scale to a large # of endpoints.

Uncooperative, buggy, malicious endpoints

• What if an endpoint is buggy, or malicious?

• We’d like the network core to do something better than best-effort

Simplified model of bottleneck link

Bottleneck
queue

(max size B)

Queuing delay

Flows
Packet-switched core network

Link rate

FIFO scheduling + Tail-drop buffer mgmt

1

12

a
b

a2b

Buffer
size

Dropped
packets

FIFO scheduling + Tail-drop buffer mgmt

12

a
b

3
456

1a 23 56 4

b

Buffer
size

Dropped
packets

Head of the line
blocking (HOL)

Next RTT: ACK-clocking makes it worse

78

b
c

9
101112

713 891112 10

b

Buffer
size

Dropped
packets

13

ACK signals sender: prior packet left
the network => resource available!

Network can be monopolized by bad
endpoints
• ACK clocking synchronizes senders to when resource is available
• Conversely, packet losses desynchronize the sender

• Contending packet arrivals may not be random enough
• e.g., Blue flow can’t capture buffer space for a few round-trips

• Can observe this effect when many TCP flows compete
• Some TCP flows can never get off the ground

• A FIFO tail-drop queue incentivizes sources to misbehave

Packet scheduling disciplines @ routers
• Significantly influences how packets are treated regardless of

the endpoint’s transmissions
• Implementations of Quality of Service (QoS) within large networks
• Implications for net neutrality debates

• Intellectually interesting and influential question
• Important connections to job scheduling in systems

• Just like in life, how you schedule work is highly impactful

Relationship: scheduling & transport
• Packet scheduling is dealing with things transport has already

put into the network
• Transport requires a few round-trip times to react; scheduling

does something “immediately”
• If you could schedule transmission out of the endpoint, you

could get them to zoom through the network without waiting
anywhere in queues
• In modern clusters, goal of transport is to often act as if a

centralized scheduler directly chose the packet to transmit from
the endpoint (leaving other packets waiting at the endpoint)

