
Transport

Review: slow start, additive inc

1K

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt
Congestion

Window

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

54 MSS

Set ssthresh to
27 MSS

Loss occurs at
cwnd = 40K

Loss occurs at
cwnd = 54K

Set ssthresh to
20 MSS

Additive

increase

Slow

sta
rt

Additive

increase

AI is slow.
Persistent connections
Large window sizes
Different laws to evolve
congestion window

The components of delay

Increasing time

Transmission
delay at the

first link
Propagation
delay of first
link

Queueing at
the router

Propagation
delay of
second link

Transmission
delay at the
second link

Bandwidth-Delay Product

Steady state cwnd for a single flow
• Suppose the bottleneck link has rate C
• Suppose the propagation round-trip delay (propRTT) between

sender and receiver is T
• Ignore transmission delays for this example;
• Assume steady state: highest sending rate with no bottleneck

congestion
• Q: how much data is in flight over a single RTT?
• C * T data i.e., amount of data unACKed at any point in time
• ACKs take time T to arrive (without any queueing). In the

meantime, sender is transmitting at rate C

The Bandwidth-Delay Product
• C * T = bandwidth-delay product:
• The amount of data in flight for a sender transmitting at the ideal rate

during the ideal round-trip delay of a packet

• Note: this is just the amount of data “on the pipe”

Data

C * T

The Bandwidth-Delay Product
• Q: What happens if cwnd > C * T?
• i.e., where are the rest of the in-flight packets?

• A: Waiting at the bottleneck router queues

Data

C * T

Router buffers and the max cwnd
• Router buffer memory is finite: queues can only be so long
• If the router buffer size is B, there is at most B data waiting in the

queue
• If cwnd increases beyond C * T + B, data is dropped!

Data

C * T

B

BDP is a crucial value for a flow
• Bandwidth-Delay Product (BDP) governs the window size of a

single flow at steady state

• The bottleneck router buffer size governs how much the cwnd
can exceed the BDP before packet drops occur

• BDP is the ideal desired window size to use the full bottleneck
link, without any queueing.
• Accommodating flow control, also the min socket buffer size to

use the bottleneck link fully

Demo of the impact of BDP & B
• Utilization
• Congestion window

Detecting and Reacting Better
to Packet Loss

Can we detect loss earlier than RTO?
• Key idea: use the information in the ACKs. How?
• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs
• Occur when network is reordering packets, or one (but not most)

packets in the window were lost
• Fast retransmit: (1) Immediately retransmit packet

• Reduce cwnd when you see many duplicate ACKs
• Consider many dup ACKs a strong indication that packet was lost
• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
• Make cwnd reduction gentler than setting cwnd = 1; recover faster
• Fast retransmit: (2) reduce window to half of its current value

Additive Increase/Multiplicative Decrease

1K

Time

Triple duplicate ACK

Slow
 sta

rt

In-flight data

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

Switch to additive
increase at cwnd =
ssthresh = 64K

Perceived loss occurs at
cwnd = 80K

(2) Set inflight
= ssthresh = 40K

Additive

increase Additive

increase

Fast retransmit: (1) retransmit dup-ACKed segment
Fast recovery keeps inflight stable until new ACK

New ACK RTO

RTO: window drops all
the way to 1 MSS

(2) Multiplicative
decrease

TCP New Reno performs additive increase and
multiplicative decrease of congestion window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP
algorithms. It is necessary for fairness across

TCP flows.

Why does multiplicative
decrease help?
Efficiency and Fairness
Chiu and Jain, “Increase and decrease algorithms for congestion avoidance”

Efficient allocation
• Don’t want sources to transmit

either too slow or too fast
• Slow: Underutilize the network
• Fast: High delays, lose packets

• Every endpoint is reacting
• May all under/overshoot
• Large oscillations possible!

• Optimal efficiency:
• Sxi = Xgoal e.g., link capacity

• Efficiency = 1 - distance from
efficiency line

User 1: x1

U
se

r 2
: x
2

Efficiency
line

2 user example

overload

underload

17

Fair allocation
• Max-min fairness
• Flows which share the same

bottleneck get the same amount
of bandwidth

• Fairness = 1 - distance from
fairness line User 1: x1

U
se

r 2
: x
2

2 user example

2 getting
too much

1 getting
too much

fairness
line

() ()
()å
å= 2

2

i

i

xn
x

xF

How should transports react?
• Given efficiency and fairness goals above, how should

transports behave?

• Consider x(t), window or rate of a source, evolving over time t

• Assume discrete time steps.
• x(t + 1) = function of x(t), feedback from the network

Linear control rules

• xi(t): window or rate of the ith user at time t

• aI, aD, bI, bD: constant increase/decrease coefficients

• Assumption: All users receive same network feedback
• Binary feedback: sense congestion or available capacity

• Assumption: All users increase or decrease simultaneously

20

(bDx1+aI,
bDx2+aI)

User 1: x1

U
se

r 2
: x
2

fairness
line

efficiency
line

(x1,x2)

(bDx1,bDx2)

• bI = 1, aD = 0

• Multiplicative
decrease enables
converging to
fairness

• Oscillates around
the most efficient
point

Additive increase, multiplicative decrease

Convergent doesn’t mean static

