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Bandwidth-Delay Product



Steady state cwnd for a single flow
• Suppose the bottleneck link has rate C
• Suppose the propagation round-trip delay (propRTT) between 

sender and receiver is T
• Ignore transmission delays for this example; 
• Assume steady state: highest sending rate with no bottleneck 

congestion
• Q: how much data is in flight over a single RTT?
• C * T data i.e., amount of data unACKed at any point in time
• ACKs take time T to arrive (without any queueing). In the 

meantime, sender is transmitting at rate C



The Bandwidth-Delay Product
• C * T = bandwidth-delay product: 
• The amount of data in flight for a sender transmitting at the ideal rate 

during the ideal round-trip delay of a packet

• Note: this is just the amount of data “on the pipe”
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The Bandwidth-Delay Product
• Q: What happens if cwnd > C * T?
• i.e., where are the rest of the in-flight packets?

• A: Waiting at the bottleneck router queues
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Router buffers and the max cwnd
• Router buffer memory is finite: queues can only be so long
• If the router buffer size is B, there is at most B data waiting in the 

queue
• If cwnd increases beyond C * T + B, data is dropped!
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BDP is a crucial value for a flow
• Bandwidth-Delay Product (BDP) governs the window size of a 

single flow at steady state

• The bottleneck router buffer size governs how much the cwnd
can exceed the BDP before packet drops occur

• BDP is the ideal desired window size to use the full bottleneck 
link, without any queueing. 
• Accommodating flow control, also the min socket buffer size to 

use the bottleneck link fully



Demo of the impact of BDP & B
• Utilization
• Congestion window



Detecting and Reacting Better 
to Packet Loss



Can we detect loss earlier than RTO?
• Key idea: use the information in the ACKs. How?
• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs
• Occur when network is reordering packets, or one (but not most) 

packets in the window were lost
• Fast retransmit: (1) Immediately retransmit packet

• Reduce cwnd when you see many duplicate ACKs
• Consider many dup ACKs a strong indication that packet was lost
• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
• Make cwnd reduction gentler than setting cwnd = 1; recover faster
• Fast retransmit: (2) reduce window to half of its current value



Additive Increase/Multiplicative Decrease
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TCP New Reno performs additive increase and 
multiplicative decrease of congestion window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP 
algorithms. It is necessary for fairness across 

TCP flows.



Why does multiplicative 
decrease help?
Efficiency and Fairness
Chiu and Jain, “Increase and decrease algorithms for congestion avoidance”



Efficient allocation
• Don’t want sources to transmit 

either too slow or too fast
• Slow: Underutilize the network
• Fast: High delays, lose packets

• Every endpoint is reacting
• May all under/overshoot
• Large oscillations possible!

• Optimal efficiency:
• Sxi = Xgoal e.g., link capacity

• Efficiency = 1 - distance from 
efficiency line
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Fair allocation
• Max-min fairness
• Flows which share the same 

bottleneck get the same amount 
of bandwidth

• Fairness = 1 - distance from 
fairness line User 1: x1
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How should transports react?
• Given efficiency and fairness goals above, how should 

transports behave?

• Consider x(t), window or rate of a source, evolving over time t

• Assume discrete time steps. 
• x(t + 1) =  function of x(t), feedback from the network



Linear control rules

• xi(t): window or rate of the ith user at time t

• aI, aD, bI, bD: constant increase/decrease coefficients

• Assumption: All users receive same network feedback
• Binary feedback: sense congestion or available capacity

• Assumption: All users increase or decrease simultaneously
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• bI = 1, aD = 0

• Multiplicative 
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converging to 
fairness
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Convergent doesn’t mean static


