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Some fundamental problems



Problems so far
• (0) Name resolution
• (1) Routing
• Control plane, data plane
• routing, forwarding



(2) High-speed data plane

• Transport won’t help if the network has  
choke points: e.g., routers
• How to design high-speed hardware 

routers?
• How to design high-speed software routers?
• Data centers, middleboxesData Center



In general, networks give no guarantees
• Packets may be lost, corrupted, reordered, on the way to the 

destination
• Best effort delivery

• Advantage: The network becomes very simple to build
• Don’t have to make it reliable
• Don’t need to implement any performance guarantees
• Don’t need to maintain packet ordering
• Almost any medium can deliver individual packets

• Example: RFC 1149: “IP Datagrams over Avian Carriers”

• Early Internet thrived: easy to engineer, no guarantees to worry about



(3) Providing guarantees for applications
• How should endpoints provide guarantees to applications?

• Transport software on the endpoint oversees implementing 
guarantees on top of an unreliable network
• Semantics are per “conversation’’ and agnostic to app data
• Reliable delivery, ordered delivery, fair sharing of resources
• Two popular transports: TCP, UDP
• (there are others)



Application-OS interface
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Example: connected 
socket (TCP)
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connect(   

IPB, portB)

send()

bind(IPaddrB, portB)

    listen()

    accept()

recv()

process

socket

process

socketIPA + portA
IPB + portB

TCP



Sample code
• Walk through

• What sockets exist on the machine? 
• ss



What does transport do?



(3.1) App Context

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Src IP, Dst IP, 
Tp Protocol

Src port, Dst port

Connection lookup: The 
operating system does 
a lookup using these 
data to determine the 
right socket and app.
 

Denotes an 
attachment point 
with the network.

Each IP address 
comes with a full 
copy of its own 
ports.

UDP or TCP listening: 
(dst IP, dst port, TCP/UDP)

TCP established: 
(dst IP, dst port, src IP, src port, TCP)



TCP sockets of different types
Listening (bound but  
unconnected)

# On server side

ls = socket(AF_INET, SOCK_STREAM)
ls.bind(serv_ip, serv_port)

ls.listen() # no accept() yet

Connected (Established)

# On server side

cs, addr = ls.accept()

# On client side

connect(serv_ip, serv_port)

(src IP,  dst IP, src port, dst port)
è

Socket (cs NOT ls)

(dst IP, dst port)
è

Socket (ss)

accept() 
creates a new 
socket with the
4-tuple 
(established) 
mapping

Enables new connections to be 
demultiplexed correctly Enables established connections to be demultiplexed correctly



(3.2) Reliability: Stop and Wait. 3 Ideas
• ACKs: Sender sends a single packet, 

then waits for an ACK to know the 
packet was successfully received. Then 
the sender transmits the next packet.

• RTO: If ACK is not received until a 
timeout, sender retransmits the packet

• Seq: Disambiguate duplicate vs. fresh 
packets using sequence numbers that 
change on “adjacent” packets

Sender Receiver

RTT

RTO

SEQ 0

ACK 0

SEQ 1

Retransmit



Sending one packet per RTT makes the data 
transfer rate limited by the time between the 
endpoints, rather than the bandwidth.

Ensure you got the (one) 
box safely; make N trips
Ensure you get N boxes 
safely; make just 1 trip! Keep many packets in flight

Stop and wait is reliable, but too slow.



Pipelined reliability
• Data in flight: data that has been sent, but sender hasn’t yet 

received ACKs from the receiver
• Note: can refer to packets in flight or bytes in flight

• New packets sent at the same time as older ones still in flight
• New packets sent at the same time as ACKs are returning
• More data moving in same time!
• Improves throughput
• Rate of data transfer

• Window
• How big should the window be?



We want to increase throughput, but …
application

process

TCP socket
receiver buffers

TCP
code

receiver

from sender

recv()

sender
Multiple locations 
for bottlenecks

What’s the 
bottleneck? How 
to adapt how 
much data to 
keep in flight?

Fl
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Control



(3.3) Flow Control
• Have a TCP sender only send as much 

as the free buffer space available at the 
receiver. 
• Amount of free buffer varies over time!
• TCP implements flow control
• Receiver’s ACK contains the amount of 

data the sender can transmit without 
running out the receiver’s socket buffer
• This number is called the advertised 

window size
• Receiver buffer must be large enough

application
process

TCP socket
receiver buffers

TCP
code

receiver network stack

from sender



(3.4) Congestion control
• How quickly should endpoints send data?

• Known as the congestion control problem
• Congestion control algorithms at source endpoints react to 

remote network congestion. 
• Key question: How to vary the sending rate based on network 

signals?



A key consequence of the Internet 
architecture:
Place trust and intelligence in endpoints.
Congestion control is a distributed 
algorithm (running at endpoints) which 
attempts to achieve an efficient and fair 
distribution of bottleneck link resources.

Feedback Control

H C



Finding the right congestion window
• There is an unknown bottleneck link rate that the sender must 

match

• If sender sends more than the bottleneck link rate:
• packet loss, delays, etc.

• If sender sends less than the bottleneck link rate:
• all packets get through; successful ACKs

• Congestion window (cwnd): amount of data in flight



Quickly finding a rate: TCP slow start
• Initially cwnd = 1 MSS

• MSS is “maximum segment size”

• Upon receiving an ACK of each MSS, 
increase the cwnd by 1 MSS

• Effectively, double cwnd every RTT

§ Initial rate is slow but ramps up 
exponentially fast

§ On loss (RTO), restart from cwnd := 1 
MSS

Host A

one segment

R
TT

Host B

time

two segments

four segments

PayloadTNL

MSS



Behavior of slow start

1 MSS

Congestion 
Window

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt

Slow
 sta

rt



Slow start has problems
• Congestion window increases too rapidly
• Example: suppose the “right” window size cwnd is 17
• cwnd would go from 16 to 32 and then dropping down to 1
• Result: massive packet drops

• Congestion window decreases too rapidly
• Suppose the right cwnd is 31, and there is a loss when cwnd is 32
• Slow start will resume all the way back from cwnd 1
• Result: unnecessarily low speed of sending data

• Instead, perform finer adjustments of cwnd: congestion avoidance



TCP New Reno: Additive Increase
• Remember the recent past to find a 

good estimate of link rate
• The last good cwnd without packet 

drop is a good indicator
• TCP New Reno calls this the slow 

start threshold (ssthresh)

• Increase cwnd by 1 MSS every RTT 
after cwnd hits ssthresh
• Effect: increase window additively

per RTT

Host A

R
TT

Host B

time

four segments

five segments

six segments

R
TT

say ssthresh=4

seven segments…

R
TT



TCP New Reno: Additive increase
• Start with ssthresh = 64K bytes (TCP default)
• Do slow start until ssthresh
• Once the threshold is passed, do additive increase
• Add one MSS to cwnd for each cwnd worth data ACK’ed
• For each MSS ACK’ed, cwnd = cwnd + (MSS * MSS) / 
cwnd

• Upon a TCP timeout (RTO),
• Set cwnd = 1 MSS
• Set ssthresh = max(2 * MSS, 0.5 * cwnd)
• i.e., the next linear increase will start at half the current cwnd



Behavior of Additive Increase

1K

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt
Congestion 

Window

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

54 MSS

Set ssthresh to
27 MSS

Loss occurs at 
cwnd = 40K

Loss occurs at 
cwnd = 54K

Set ssthresh to
20 MSS

Additive 

increase

Slow
 

sta
rt

Additive 

increase

AI is slow.
Persistent connections
Large window sizes
Different laws to evolve 
congestion window



Sample code & demo


