
Internet Architecture



Computer Networks

Principles and algorithms by which communication 
software & hardware are organized

Design of foundational artifacts of the Internet
 and other modern networks

Collections of machines exchanging information 
with each other



There’s a science to communication
• What language should machines speak?
• How to partition functionality? “Who” should do “what”?
• How to make communication effective?
• Achieve better scale, performance, resource efficiency
• Evolve to address new needs over time

• How to grow organically? include more communicating parties
• Make it easy for humans to build and manage?

• How to make communication worthy of societal trust?



A brief history of Internet 
Architecture



Prior to the Internet

Net 1

Net 2

Net 3

Different technologies:
wireless/wired
slow/fast, 
un/reliable,
switching techniques
Different administration

How to interconnect these existing 
networks?
Focus more on practicality and 
usefulness rather than “clean design”



Circuit switching

1. Setup: Control message sets up a 
path from origin to destination

2. Accept signal informs source that 
data transmission may proceed

3. Data transmission begins
4. Entire path remains allocated to the 

transmission (whether used or not)
5. When transmission is complete, 

source releases the circuit

Ti
m
e

A B C D

Data

Call accept signal

Call request signal

Data
Transmission

Time

Propagation 
Delay Resource 

reservation
delay



Packet switching

Ti
m
e

A B C D

Pkt 1

Pkt 2

Pkt 3
Pkt 1

Pkt 2

Pkt 3 Pkt 1

Pkt 2

Pkt 3

Total transfer time

Header

Queueing
Delay

Store and forward
delay



Packet switching is simpler and required less 
from existing networks that were interconnected.



Survivability

Should applications care? 
No
Who has the “context” of the 
communication? Endpoint vs. Network

Tradeoffs:
Replicate, still can’t guarantee
Instead, fate sharing. Simpler to 
engineer



The Internet puts the context of conversations in 
the endpoints. Call this transport information.

Networks provide datagram service.

Endpoints are trusted to implement the right 
algorithms to provide any sort of guarantees 

about communication.



Distributed Management

Net 1

Net 2

Net 3

Don’t require single administrative entity. 
The Internet is federated.

Two-tier management: within an 
administration, across administrations



Consequences of datagram service
• A simple building block for different kinds of applications:

• Bulk file transfer
• Conversational (real time)
• Try very hard not to constraint what can be implemented atop network

• No explicit guarantees required from interconnecting networks
• Accommodate a variety of existing networks

• Services explicitly not assumed from the network:
• reliable or sequenced delivery, network level broadcast or multicast, 

priority ranking of transmitted packet, support for multiple types of 
service, and internal knowledge of failures, speeds, or delays.

• Only see packets, no higher-level context



Layering and Protocols

13



Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Application: useful user-level functions

Software/hardware organization at hosts
Communication functions 
broken up and “stacked”

Each layer depends on the 
one below it.

Each layer supports the 
one above it.

The interfaces between 
layers are well-defined and 

standardized.



Internet software and hardware
are arranged in layers.

Layering provides modularity

Each layer: well-defined function
& interfaces to layers above & below it.

 Functionality is implemented in protocols.



• Protocols consist of two things

• Message format
• structure of messages exchanged with an endpoint

• Actions
• operations upon receiving, or not receiving, messages

• Example of a Zoom conversation:
• Message format:  English words and sentences
• Actions: when a word is heard, say “yes”; when nothing is heard for 

more than 3 seconds, say “can you hear me?”
16

Protocols: The “rules” of networking



• Standardized by the Internet Engineering Task Force (IETF) 
• through documents called RFCs (“Request For Comments”)

• Layering of protocols

…

FTP HTTP SIP RTSP

TCP UDP

IP

802.11 X.25 ATM

HTTPS

17

The protocols of the Internet

HTTP FTP TFTPNV

TCP UDP

IP

Ether ATM WiFi…



Link layer

Network

Transport

Applications

The Internet

Link layer

Network

Transport

Applications

The Internet

Packet takes on 
headers (metadata) 

at each layer

Packet starts as an 
app “payload” 



Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications

Link layer

Network

Link layer

Network



Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications

Link layer

Network

Link layer

Network

Routers have network and 
link layers too!



• Communication over the Internet is a complex problem.

• Layering simplifies understanding, testing, maintaining

• Easy to improve or replace protocol at one layer without affecting 
others

21

Layering



Many open and partially solved problems
• Resource management in distributed routing
• Not cost effective: small packets have high header overheads
• Retransmitting lost packets end to end can be inefficient 

(network recovery could have made things simpler)
• Cost of attaching a host to the network is somewhat high: all

necessary software must reside on the host (e.g., transport). 
• No inherent network mechanisms to account for or control 

resource usage
• e.g., Putting important packets ahead in queues



Some fundamental problems



Some definitions
• The Internet is an example of a computer network
• Endpoint or Host: Machine running user application
• Packet: a unit of data transmission (ex: 1500 bytes)
• Link: physical communication channel between two or more 

machines
•Router: A machine that processes packets moving them 

from one link to another towards a destination
•Network: Collection of interconnected machines
• Address: a unique name given to a machine

host/
endpoint

router router

linklink link
host/

endpoint

packet

IP: 10.0.0.1

IP: 128.0.0.2



(0) Naming & Resolution

• Communication requires naming the endpoints 
• Addresses

• Internet addresses (IP addresses) allocated hierarchically
• Machine readable, not easy for humans to remember

• Link addresses are tied to the hardware on the endpoint
• Name resolution: how to turn human-readable names 

(google.com) into routable addresses?

Zipcode 08854

Zipcode 08090



Googlegoogle.com

Machines communicate using IP addresses and ports
IP addresses: ~12 digits (IPv4) or more
Ports: fixed based on application (e.g., 80: web)

Need a way to turn human-readable 
addresses into Internet addresses.

Ask someone Ask everyone Tell everyone
Directory service Query broadcast Information flooding
Asking “someone” could involve asking many machines… 



• Key idea: Implement a server that looks up a table.
• Will this scale?
• Every new (changed) host needs to be (re)entered in this table
• Performance: can the server serve billions of Internet users?
• Failure: what if the server or the database crashes?
• Security: What if someone “takes over” this server?

27

DOMAIN NAME IP ADDRESS
spotify.com 98.138.253.109

cs.rutgers.edu 128.6.4.2

www.google.com 74.125.225.243

www.princeton.edu 128.112.132.86

QUERY cs.rutgers.edu

RESPONSE 128.6.4.2

<Client IP, CPort, DNS server IP, 53> 

<DNS server, 53, Client IP, Cport> 

Domain Name Service



28

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

rutgers.edu
DNS servers

umass.edu
DNS serversgoogle.com

DNS servers
amazon.com
DNS servers

wnyc.org
DNS servers

cs.rutgers.edu 
DNS server

RFC 1034

Distributed and hierarchical database
Top-level domain 
(TLD) servers

Authoritative name 
server

Hierarchy Replication Indirection



requesting host
cs.rutgers.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.rutgers.edu

1

2
3

4

5

6

umass.edu DNS server
dns.umass.edu

78

.edu DNS server• Host at cs.rutgers.edu wants IP 
address for gaia.cs.umass.edu

• Local DNS server
• Root DNS server
• TLD DNS server
• Authoritative DNS server

DNS name resolution



Example DNS interactions
• dig <domain-name>
• dig +trace <domain-name>
• dig @<dns-server> <domain-name>



•Networks must move data between different hosts
•Need to figure out how to move packets from one host 

to another host, e.g., how to reach google.com from 
your laptop
• Known as the routing problem

Router
Router

Router

32

(1) Routing



Routing



Two key network-layer functions

• Forwarding: move packets 
from router’s input to 
appropriate router output

• Routing: determine route 
taken by packets from source 
to destination
• routing algorithms

• The network layer solves 
the routing problem.

Analogy: taking a road 
trip

§ Forwarding: process 
of getting through 
single exit

§ Routing: process of 
planning trip from 
source to destination

34
network

layer runs
everywhere



Control/Data Planes
Data plane = Forwarding
• local, per-router function
• determines how datagram 

arriving on router input port is 
forwarded to router output port

Control plane = Routing
• network-wide logic
• determines how datagram is routed 

along end-to-end path from source 
to destination endpoint
• two control-plane approaches:
• Distributed routing algorithm 

running on each router
• Centralized routing algorithm 

running on a (logically) 
centralized machine

0111

values in arriving 
packet header

1

23



(2) High-speed data plane

• Transport won’t help if the network has  
choke points: e.g., routers
• The interconnection problem: how do you 

design routers to achieve high end-to-end 
performance between endpoints?
• Also designing large data center networks
• Also building high-speed softwareData Center



In general, networks give no guarantees
• Packets may be lost, corrupted, reordered, on the way to the 

destination
• Best effort delivery

• Advantage: The network becomes very simple to build
• Don’t have to make it reliable
• Don’t need to implement any performance guarantees
• Don’t need to maintain packet ordering
• Almost any medium can deliver individual packets

• Example: RFC 1149: “IP Datagrams over Avian Carriers”

• Early Internet thrived: easy to engineer, no guarantees to worry about



(3) Providing guarantees for applications
• How should endpoints provide guarantees to applications?

• Transport software on the endpoint oversees implementing 
guarantees on top of an unreliable network
• Reliable delivery, ordered delivery, fair sharing of resources



Application-OS interface



Googlegoogle.com

Link layer

Network

Transport

Applications

Link layer

Network

Transport

ApplicationsUser

Kernel
Socket

Example: connected 
socket (TCP)



Googlegoogle.com

connect(   

IPB, portB)

send()

bind(IPaddrB, portB)

    listen()

    accept()

recv()

process

socket

process

socketIPA + portA
IPB + portB



Googlegoogle.com

connect(   

IPB, portB)

send()

bind(IPaddrB, portB)

    listen()

    accept()

recv()



(3.1) (De)multiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Src IP, Dst IP, 
Tp Protocol

Src port, Dst port

Connection lookup: The 
operating system does 
a lookup using these 
data to determine the 
right socket and app.
 

Denotes an 
attachment point 
with the network.

Each IP address 
comes with a full 
copy of its own 
ports.

UDP or TCP listening: 
(dst IP, dst port, TCP)

TCP established: 
(dst IP, dst port, src IP, src port, TCP)



TCP sockets of different types
Listening (bound but  
unconnected)

# On server side

ls = socket(AF_INET, SOCK_STREAM)
ls.bind(serv_ip, serv_port)

ls.listen() # no accept() yet

Connected (Established)

# On server side

cs, addr = ls.accept()

# On client side

connect(serv_ip, serv_port)

(src IP,  dst IP, src port, dst port)
è

Socket (cs NOT ls)

(dst IP, dst port)
è

Socket (ss)

accept() 
creates a new 
socket with the
4-tuple 
(established) 
mapping

Enables new connections to be 
demultiplexed correctly Enables established connections to be demultiplexed correctly



(3.2) Reliability: Stop and Wait. 3 Ideas
• ACKs: Sender sends a single packet, 

then waits for an ACK to know the 
packet was successfully received. Then 
the sender transmits the next packet.

• RTO: If ACK is not received until a 
timeout, sender retransmits the packet

• Seq: Disambiguate duplicate vs. fresh 
packets using sequence numbers that 
change on “adjacent” packets

Sender Receiver

RTT

RTO

SEQ 0

ACK 0

SEQ 1

Retransmit



Sending one packet per RTT makes the data 
transfer rate limited by the time between the 
endpoints, rather than the bandwidth.

Ensure you got the (one) 
box safely; make N trips
Ensure you get N boxes 
safely; make just 1 trip! Keep many packets in flight



Pipelined reliability
• Data in flight: data that has been sent, but sender hasn’t yet 

received ACKs from the receiver
• Note: can refer to packets in flight or bytes in flight

• New packets sent at the same time as older ones still in flight
• New packets sent at the same time as ACKs are returning
• More data moving in same time!
• Improves throughput
• Rate of data transfer



(3.3) Congestion control
• How quickly should endpoints send data?

• Known as the congestion control problem
• Congestion control algorithms at source endpoints react to 

remote network congestion. Part of the transport sw/hw stack.
• Key question: How to vary the sending rate based on network 

signals?


