
Lecture 21, Computer Networks (198:552)
Fall 2019

Congestion Control for
Data Centers

Material adapted from slides by
Mohammad Alizadeh

Review: TCP congestion control
• Keep some in-flight (un-ACK’ed) packets: congestion window

• Adjust window based on several algorithms:
• Startup: slow start
• Steady state: AIMD
• Loss: fast retransmission, fast recovery

• Main question for this lecture:
• (How) should this design change for data centers?

DC Transport Requirements
High throughput, low latency, burst tolerance

INTERNET

Servers

Fabric

100Kbps–100Mbps
links

~100ms latency

10–40Gbps links
~10–100μs latency

Transport
inside the DC

INTERNET

Servers

Fabric

web app data-
base

map-
reduc

e
HPC monitorin

gcache

Interconnect for distributed compute
workloads

Transport
inside the DC

Data center workloads
• Mice and Elephants

• Short messages
(e.g., query, coordination)

• Large flows
(e.g., data update, backup)

Low Latency

High Throughput

TCP timeout

Worker 1

Worker 2

Worker 3

Worker 4

Aggregator

RTOmin = 300 ms

• Synchronized fan-in congestion

Vasudevan et al. (SIGCOMM’09)

Incast

Trace of a real incast event

Maybe, reduce RTO to mitigate this

• Requests are jittered over 10ms window.
• Jittering switched off around 8:30 am.

M
LA

 Q
ue

ry
 C

om
pl

et
io

n
Ti

m
e

(m
s)

Jittering trades of median for high percentiles

Jittering to mitigate incast

HOL Blocking and Buffer Pressure

Queue buildup increases latency for everyone
(Reducing RTO doesn’t help latency)

Another possibility: Delay-based CC
• Keep just a few packets in queues by observing delays

• Adjust window such that only a few packets are in queue

• RTT estimates need to be very accurate and precise
• Can be challenging in low-RTT data centers

Data Center TCP (DCTCP)
Design of the congestion control algorithm

Sender 1

Sender 2

Receiver

ECN = Explicit Congestion Notification

Time

W
in

do
w

 S
iz

e
(R

at
e)

Additive Increase:
W à W+1 per round-trip time

Multiplicative Decrease:
W à W/2 per drop or ECN mark

ECN Mark (1 bit)

Review: TCP algorithm

DCTCP: Main idea
• Extract multi-bit feedback from single-bit stream of ECN marks
• Reduce window size based on fraction of marked packets

ECN Marks TCP DCTCP

1 0 1 1 1 1 0 1 1 1 Cut window by 50% Cut window by 40%

0 0 0 0 0 0 0 0 0 1 Cut window by 50% Cut window by 5%

W
in

do
w

 S
iz

e
(B

yt
es

)

W
in

do
w

 S
iz

e
(B

yt
es

)

Time (sec) Time (sec)

TCP DCTCP

DCTCP: Main idea

Switch side:
• Mark packets when Queue Length > K.

Sender side:
• Maintain running average of fraction of packets marked (α).

• Adaptive window decreases:

• Note: decrease factor between 1 and 2.

B KMark Don’t
Mark

each RTT : F =
of marked ACKs
Total # of ACKs

 Þ a¬ (1- g)a + gF

W ¬ (1- a
2
)W

DCTCP algorithm

Efficient and “lossless” ACK generation

 0

 100

 200

 300

 400

 500

 600

 700

 0

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (seconds)

DCTCP, 2 flows
TCP, 2 flows

 0

 100

 200

 300

 400

 500

 600

 700

 0

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (seconds)

DCTCP, 2 flows
TCP, 2 flows

 0

 100

 200

 300

 400

 500

 600

 700

 0

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (seconds)

DCTCP
TCP

(K
By

te
s)

Experiment: 2 flows (Win 7 stack), Broadcom 1Gbps Switch

ECN Marking Thresh = 30KB

Buffer is mostly empty

DCTCP mitigates Incast by creating a
large buffer headroom

DCTCP vs TCP

Why it works
1. Low Latency

ü Small buffer occupancies → low queuing delay

2. High Throughput
ü ECN averaging → smooth rate adjustments, low variance

3. High Burst Tolerance
ü Large buffer headroom → bursts fit
ü Aggressive marking → sources react before packets are dropped

Packets sent in this
RTT are marked

• How much buffering does DCTCP need
for 100% throughput?
• Need to quantify queue size oscillations (stability).

Time

(W*+1)(1-α/2)

W*

Window Size

W*+1

B K

α =
of pkts in last RTT of Period

of pkts in Period

Setting parameters: A bit of analysis

22

K > (1/7) C x RTT for TCP:
K > C x RTT

Setting parameters: A bit of analysis
B K

• How small can queues be without loss
of throughput?
Ø Need to quantify queue size oscillations (Stability).

Background Flows Query Flows

Bing benchmark (baseline)

• DCTCP takes at most ~40% more RTTs than TCP
• “Analysis of DCTCP”, SIGMETRICS 2011

• Intuition: DCTCP makes smaller adjustments than TCP, but
makes them much more frequently

TCP DCTCP

Convergence time

CC evaluation: several aspects!
• Throughput, delays, flow completion times
• Fairness, convergence times
• Specific impairments:
• incast (many to one, all to all)
• collateral damage from incast
• buffer pressure

• Impact on background traffic
• Multi-hop versus single-hop bottlenecks

CC Deployment Concerns
Life ain’t easy in the fast lane

Practical deployment concerns in DCs
• Coexistence with legacy protocols like TCP Cubic
• Application code can’t be upgraded in one shot

• Minimum window size matters during heavy incast events
• e.g., 2 packets versus 1 packet!

• Setting pkt flags appropriately at senders, receivers, and routers
• Non “ECN-capable” flagged packets will be dropped when Q > K
• … including the SYN packets of any connection

• Receive-buffer tuning
• Receive buffer must be at least BDP, but what is the BDP?

