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Review: TCP congestion control

« Keep some in-flight (un-ACK’ed) packets: congestion window

* Adjust window based on several algorithms:

e Startup: slow start
« Steady state: AIMD
 Loss: fast retransmission, fast recovery

* Main question for this lecture:
* (How) should this design change for data centers?



DC Transport Requirements
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~100ms latency

“aa
-

<

10—40Gbps links
~10-100ps latency

i
Servers



Transport
inside the DC

workloads

deadline=250ms

deadline=50ms

Aggregator

deadline=10ms



Data center workloads
* Mice and Elephants

« Short messages
(e.g., query, coordination)

* Large flows
(e.g., data update, backup)




Incast

» Synchronized fan-in congestion
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Vasudevan et al. (SIGCOMM’09)



Trace of a real incast event
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Maybe, reduce RTO to mitigate this



Jittering to mitigate incast
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Jittering trades of median for high percentiles




HOL Blocking and Buffer Pressure

switch

(b)

Outputqueue

Key: memmellp = |arge flow ----» =small flow
Queue buildup increases latency for everyone
(Reducing RTO doesn’t help latency)



Another possibility: Delay-based CC

» Keep just a few packets in queues by observing delays

queue_use = cwnd — BWEXR

| noLoad/R

 Adjust window such that only a few packets are in queue

a < queue_use < f

* RTT estimates need to be very accurate and precise
« Can be challenging in low-RTT data centers

| actual)



Data Center TCP (DCTCP)



Review: TCP algorithm

Sender 1

Sender 2



DCTCP: Main idea

 Extract multi-bit feedback from single-bit stream of ECN marks
* Reduce window size based on fraction of marked packets



DCTCP: Main idea
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DCTCP algorithm 5 R
Switch side: Mark

|
« Mark packets when Queue Length > K. : ]
|

Sender side:
« Maintain running average of fraction of packets marked (a).

# of marked ACKs
each RTT: F = = a< (1-9)a+ oF
Total # of ACKs =8

» Adaptive window decreases: W« (- %)W

 Note: decrease factor between 1 and 2.



Efficient and “lossless” ACK generation

Send 1 ACK for Sendimmediate Send 1 ACK for
every m packets ACKwith ECN=0 every m packets
with ECN=0 = with ECN=1

Send immediate
ACK with ECN=1



DCTCP vs TCP

Experiment: 2 flows (Win 7 stack), Broadcom 1Gbps Switch
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DCTCP mitigates Incast by creating a
large buffer headroom
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Why it works

1. Low Latency
v Small buffer occupancies — low queuing delay

2. High Throughput
v" ECN averaging — smooth rate adjustments, low variance

3. High Burst Tolerance

v" Large buffer headroom — bursts fit
v Aggressive marking — sources react before packets are dropped



Setting parameters: A bit of analysis

B K
« How much buffering does DCTCP need

for 100% throughput?

Need to quantify queue size oscillations (stability). :

. . Packets sent in this
Window Size RTT are marked
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Setting parameters: A bit of analysis

B K
* How small can queues be without loss

of throughput?

> Need to quantify queue size oscillations (Stability). :

)

K> (1/7) Cx RTT
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Bing benchmark (baseline)
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Convergence time

« DCTCP takes at most ~40% more RTTs than TCP
 “Analysis of DCTCP”, SIGMETRICS 2011

* Intuition: DCTCP makes smaller adjustments than TCP, but
makes them much more frequently
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CC evaluation: several aspects!

» Throughput, delays, flow completion times
 Fairness, convergence times
» Specific impairments:

* incast (many to one, all to all)

» collateral damage from incast
* buffer pressure

 Impact on background traffic
* Multi-hop versus single-hop bottlenecks



CC Deployment Concerns



Practical deployment concerns in DCs

» Coexistence with legacy protocols like TCP Cubic
» Application code can’t be upgraded in one shot

* Minimum window size matters during heavy incast events
* e.g., 2 packets versus 1 packet!

 Setting pkt flags appropriately at senders, receivers, and routers
* Non “ECN-capable” flagged packets will be dropped when Q > K
» ... Including the SYN packets of any connection

* Receive-buffer tuning
* Receive buffer must be at least BDP, but what is the BDP?



