Congestion Control for
Data Centers

Lecture 21, Computer Networks (198:552)
Fall 2019

Material adapted from slides by I{[]TGERS

Mohammad Alizadeh

NNNNNNNNNNNNNNNNNNNNNN

Review: TCP congestion control

« Keep some in-flight (un-ACK’ed) packets: congestion window

* Adjust window based on several algorithms:

e Startup: slow start
« Steady state: AIMD
 Loss: fast retransmission, fast recovery

* Main question for this lecture:
* (How) should this design change for data centers?

DC Transport Requirements

100Kbps—100Mbps _ Transport
links inside the DC

~100ms latency

“aa
-

<

10—40Gbps links
~10-100ps latency

i
Servers

Transport
inside the DC

workloads

deadline=250ms

deadline=50ms

Aggregator

deadline=10ms

Data center workloads
* Mice and Elephants

« Short messages
(e.g., query, coordination)

* Large flows
(e.g., data update, backup)

Incast

» Synchronized fan-in congestion

Worker 1

Worker 2 Aggregator
"g

Worker 3

Worker 4

Vasudevan et al. (SIGCOMM’09)

Trace of a real incast event

0.0 0.8ms 1.1ms 13.5ms 320.1ms
|

aggregator l\ \IA \/;\ A ff /\
queries sent... l.'l |‘~ ‘7‘

V \ / \ responses sent... ':
workerl V! \ II I\i“/ /| .: o
worker2 ¥ — 7 —
worker43 \" ; ; \ [v ,
LI
S data RTT + Afterloss, a tlm.eOl.Jt before
Queue retransmission
——————— > TCPACK

Maybe, reduce RTO to mitigate this

Jittering to mitigate incast

Q Bl 50th percentile Bl 50th percentile
& B 95th percentile B 95th percentile
i: Bl 99.9th percentile

a0
c
O = i
° 99.9th percentile --._/"_//
o 50 -
Q. Median /
E 50
S o /

A
b 30
()
S =%
0 20
< 50 23
—
= é 0 = :
8:00 AM 3:30 AM

Saturday, December 19, 2003

Jittering trades of median for high percentiles

HOL Blocking and Buffer Pressure

switch

(b)

Outputqueue

Key: memmellp = |arge flow ----» =small flow
Queue buildup increases latency for everyone
(Reducing RTO doesn’t help latency)

Another possibility: Delay-based CC

» Keep just a few packets in queues by observing delays

queue_use = cwnd — BWEXR

| noLoad/R

 Adjust window such that only a few packets are in queue

a < queue_use < f

* RTT estimates need to be very accurate and precise
« Can be challenging in low-RTT data centers

| actual)

Data Center TCP (DCTCP)

Review: TCP algorithm

Sender 1

Sender 2

DCTCP: Main idea

 Extract multi-bit feedback from single-bit stream of ECN marks
* Reduce window size based on fraction of marked packets

DCTCP: Main idea

ECN Marks TCP DCTCP

1011110111 Cut window by 50% Cut window by 40%
0000000001 Cut window by 50% Cut window by 5%
TCP DCTCP
g N0
@D g w0000 PR L oha s, WY v
22 z 8%
He N =
g 50000 g 20000
| Tihe (sed) | | Ti_me (seé) |

DCTCP algorithm 5 R
Switch side: Mark

|
« Mark packets when Queue Length > K. :]
|

Sender side:
« Maintain running average of fraction of packets marked (a).

of marked ACKs
each RTT: F = = a< (1-9)a+ oF
Total # of ACKs =8

» Adaptive window decreases: W« (- %)W

 Note: decrease factor between 1 and 2.

Efficient and “lossless” ACK generation

Send 1 ACK for Sendimmediate Send 1 ACK for
every m packets ACKwith ECN=0 every m packets
with ECN=0 = with ECN=1

Send immediate
ACK with ECN=1

DCTCP vs TCP

Experiment: 2 flows (Win 7 stack), Broadcom 1Gbps Switch

X 700 -
-’a Buffer is mostly empty
D 600 k A " X X
e L\ X \ ! X ;) " 1,
>.. . 1 I)(\ 7\ N x N ?<I . ,
! Yo !
m 500 L \‘ % ‘| , \‘ 1 ‘ ;(, \‘ ! \‘ ,’: */ ‘ 1 \‘ le
~—" 1 :I ' ,’é ;(' Yoo WA /A ?‘I vl
\ \ 1
L 400 i ;(|| ! ;kl ‘| ,I g 1 II ! ;é
-'57 9<I v - !
X

DCTCP mitigates Incast by creating a
large buffer headroom

0) Time (seconds)

Why it works

1. Low Latency
v Small buffer occupancies — low queuing delay

2. High Throughput
v" ECN averaging — smooth rate adjustments, low variance

3. High Burst Tolerance

v" Large buffer headroom — bursts fit
v Aggressive marking — sources react before packets are dropped

Setting parameters: A bit of analysis

B K
« How much buffering does DCTCP need

for 100% throughput?

Need to quantify queue size oscillations (stability). :

. . Packets sent in this
Window Size RTT are marked

A
W*+1
W*

(W*+1)(1-a/2)

‘e

Setting parameters: A bit of analysis

B K
* How small can queues be without loss

of throughput?

> Need to quantify queue size oscillations (Stability). :

)

K> (1/7) Cx RTT

22

Bing benchmark (baseline)

Background Flows Query Flows
70
— 200 182182 m DCTCP
£ m DCTCP € mrcp
— =
2 150 mTCP - 50
= B .40
5 2 E
2 100 e £30 28
2 63 64 S - 19
£« >
5 ;, wA ull o wum

10-100KB 100KB-1MB 1-10MB >10MB
Flow Size

Mean 95th 99th 99.9th

Convergence time

« DCTCP takes at most ~40% more RTTs than TCP
 “Analysis of DCTCP”, SIGMETRICS 2011

* Intuition: DCTCP makes smaller adjustments than TCP, but
makes them much more frequently

TCP | - DCTCP
200 : ;31ms 200 : I

-
A
o

Window Size (packets)
o
o

Window Size (packets)
o
o

n
o

o

1 105 11 115 12
Time (s)

CC evaluation: several aspects!

» Throughput, delays, flow completion times
 Fairness, convergence times
» Specific impairments:

* incast (many to one, all to all)

» collateral damage from incast
* buffer pressure

 Impact on background traffic
* Multi-hop versus single-hop bottlenecks

CC Deployment Concerns

Practical deployment concerns in DCs

» Coexistence with legacy protocols like TCP Cubic
» Application code can’t be upgraded in one shot

* Minimum window size matters during heavy incast events
* e.g., 2 packets versus 1 packet!

 Setting pkt flags appropriately at senders, receivers, and routers
* Non “ECN-capable” flagged packets will be dropped when Q > K
» ... Including the SYN packets of any connection

* Receive-buffer tuning
* Receive buffer must be at least BDP, but what is the BDP?

