Crash Consistency

NNNNNNNNNNNNNNNNNNNNNNN

SHOENEED DEDDEERE Inconsistency: a result of
aEEbEREE DEBEEEE® redundancy (non-independence)
LLLLLLT B LLLLLLT Knowing A limits th
DEEEEEEE BEEEEEEE ving A iMIts te
48 5 56 63 possible values of B.

Inode pointer Inode link count Superblock total block count
Data block bitmap Directory entry Inode pointer

Filesystem checker: after a crash, look at data structures

100s of
checks
& fixes

on disk, and make them consistent.

Dir Entry Dir Entry

inode inode
link_count =1 link_count =2

Dir Entry Dir Entry

Duplicate Pointers

inode block
link_count=1 (number 123)

inode |
link_count = 1 How to fix??7?7?

Duplicate Pointers

inode block
link_count=1 (number 123)

inode block
link_count=1 (number 789)

Duplicate Pointers

inode block

link_count=1

(number 123)

inode Simple ind block
link_count=1 g (number 789)

But is this correct?

Bad Pointer

inode
link_count=1 > 9999
super block How to fix??7?

tot-blocks=8000

Bad Pointer

inode
link_count = 1 Simple fix! (But is this correct?)

super block
tot-blocks=8000

Problems with fsck

Problem 1:
* Not always obvious how to fix file system image

* Don’t know “correct” state, just a consistent one

» Easy way to get consistency: reformat disk!

Problem 2: fsck is very slow

4500 - . Phase 1 Ml Phase 3 Phase 54176

4000 - % Phase 2 H Phase4 = .L..G2.)

3500 A 3398

3000 1

25004 0 smeeseses

2000

1500 1

1000 1
500 -

O__

Checking Time (Second)

150GB 300GB 450GB 600GB
File system image size

Checking a 600GB disk takes ~70 minutes

ffsck: The Fast File System Checker

Ao Ma, EMC Corporation and University of Wisconsin—Madison; Chris Dragga,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Consistency Solution #2: Journaling

Goals
« Ok to do some recovery work after crash, but not to read entire disk

« Don’t move file system to just any consistent state, get correct state
(in most cases)

Strategy
« Atomicity
 Definition of atomicity for concurrency

* operations in critical sections are not interrupted by operations on
related critical sections

* Definition of atomicity for persistence

» collections of writes are not interrupted by crashes;
either (all new) or (all old) data is visible

Consistency vs Correctness

Say a set of writes moves the disk from state Ato B

empty all states

consistent states

fsck gives consistency
Atomicity gives A or B.

Journaling: General Strategy

Never delete ANY old data, until, ALL new data is safely on disk

Ironically, adding redundancy to fix the problem caused by
redundancy.

Do a little extra work during regular operation, to avoid A LOT OF
extra work during recovery

Also referred to as write-ahead logging

Fight Redundancy with Redundancy
Want to replace X with Y. Original:

DISK

Fight Redundancy with Redundancy
Want to replace X with Y. Original:

DISK

Good time to crash?
Yes, good time to crash

Fight Redundancy with Redundancy
Want to replace X with Y. Original:

DISK

Good time to crash?
bad time to crash

Fight Redundancy with Redundancy
Want to replace X with Y. Original:

DISK

Good time to crash?
good time to crash

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

Good time to crash?
good time to crash

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

good time to crash

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

good time to crash

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

good time to crash

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

good time to crash

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

good time to crash

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

good time to crash

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

With journaling, it's
always a good time to
crash!

Inconsistency: how do we fix it?

Develop algorithm to atomically update two blocks:
Write 10 to block O; write 5 to block 1

Assume these are only blocks in file system.

Assume: only 1 block, not multiple, can be written in one shot

Usage Scenario: Block 0 stores Alice’s bank account;
Block 1 stores Bob’s bank account; transfer $2 from Alice to Bob

Time Block 0 Block 1

1 12 3

2 12 5 4_ @%% crash here!
3 10 <

A wrong update algorithm can lead to inconsistent states
(non-atomic updates)

Initial Solution: Journal New Data

Suppose we make updates on a copy of each block first

(note: must allocate space for these copies)

Block 1

Time Block 0
1 12
2 12
3 12
4 12
5 10
6 10
7 10

OO O W W W W w

J:2 J:3 J:validi4

0

10
10
10
10
10
10

0

OO o1 01 O O1 O

0

0 Crash here?
0 - 0Old data

1

1 Crash here?
1 —->New data

0

Let’s understand behavior if crash occurs after each write
Note: every step assumes previous update committed to disk

Scenario: Block 0 stores Alice’s bank account; Block 1 stores Bob’s bank account; transfer $2 from Alice to Bob

void update_accounts(int cashl, int cash2) {
write(cashl to block 2) // Alice backup
write(cash2 to block 3) // Bob backup
write(1l to block 4) // backup is safe
write(cashl to block @) // Alice
write(cash2 to block 1) // Bob

write(@ to block 4) // discard backup

Suppose the machine failed somewhere along the way...

void recovery() {
if(read(block 4) == 1) {
write(read(block 2) to block @) // restore Alice
write(read(block 3) to block 1) // restore Bob
write(@ to block 4) // discard backup
} // no recovery needed if !(read(block 4) == 1)

Terminology

Extra blocks are called a journal

* (all blocks considered same: inode, superblock, ...)
The writes to the journal are a journal transaction

The last valid bit written is a journal commit block
* journal commit relies on disk committing single-block writes fully or not at all

The writing of the actual data (in place) is called checkpoint

Approach described above: Data journaling

File System Integration

FS
Journal

Scheduler
Disk

Problems with data journaling approach

2N-1 2N
Disadvantages?

- slightly < half of disk space is usable

- transactions copy all the data (1/2 disk bandwidth!)

- disk commit forces hardware to seek to random locations one
after another

Fix #1: Small Journals

Still need to first write all new data elsewhere before
overwriting new data

Goal:
* Reuse small area as backup for any block

How?
« Store block numbers in a transaction "header” in journal

New Layout

journal

/ \
L L] L] fsafede]o
0 1 2 3 4 5 6 7 8 9 10 11 12

transaction: write A to block 5; write B to block 2

New Layout

journal

/ \
{ e] []] fsafele]n
0 1 2 3 4 5 6 7 8 9 10 11 12

transaction: write A to block 5; write B to block 2

Checkpoint: Writing new data to in-place locations

New Layout

journal

/ \
{ e] []] fsafele]o
0 1 2 3 4 5 6 7 8 9 10 11 12

New Layout

journal

/ \
] []] fsafele]o
0 1 2 3 4 5 6 7 8 9 10 11 12

transaction: write C to block 4; write T to block 6

New Layout

journal

/ \
{ e] []] Jesfele]o
0 1 2 3 4 5 6 7 8 9 10 11 12

transaction: write C to block 4; write T to block 6

New Layout

journal

/ \
o] []] Jesfole]o
0 1 2 3 4 5 6 7 8 9 10 11 12

transaction: write C to block 4; write T to block 6

New Layout

journal

/ \
{ e] []] JesfolT]o
0 1 2 3 4 5 6 7 8 9 10 11 12

transaction: write C to block 4; write T to block 6

New Layout

journal

/ \
[o] fola]rf | Jusfolrt]
0 1 2 3 4 5 6 7 3 9 10 11 12

transaction: write C to block 4; write T to block 6

New Layout

journal

/ \
[o] fola]rf | JusfolT]o
0 1 2 3 4 5 6 7 3 9 10 11 12

transaction: write C to block 4; write T to block 6

Optimizations

1. Reuse small area for journal
2. Barriers - (fsync)

3. Checksums

4. Circular journal

5. Metadata journal

Correctness depends on Ordering

journal
/ \
HEEOECORNEEREOED
o 1 2 3 4 5 6 7 8 9 10 11 12

transaction: write C to block 4; write T to block 6

write order: 9, 10, 11, 12, 4, 6, 12

Enforcing total ordering among these writes is inefficient
(random writes)

Instead: Use barriers w/ disk cache flush at key points (Q: when?)

Ordering

journal
/ \
| fe] fefalrf | esje] e
o 1 2 3 4 5 6 7 8 9 10 11 12

transaction: write C to block 4; write T to block 6
write order: 9,10,11 |12 | 4,6 | 12

Use barriers at key points in time:

1) Before journal commit, ensure journal transaction entries complete
2) Before checkpoint, ensure journal commit complete

3) Before free journal, ensure in-place updates complete

Force disk controller to commit data through fsync()/sync()

Optimizations

1. Reuse small area for journal
2. Barriers

3. Checksums

4. Circular journal

5. Metadata journal

Checksums to avoid txn commit barrier

journal
/ \
| fe] fefalrd | esje] e
o 1 2 3 4 5 6 7 8 9 10 11 12

write order: 9,10,1111214,61 12

Can we get rid of barrier between (9, 10, 11) and 12 ?

Checksums to avoid txn commit barrier

journal
/ \
I I 1 I N I I 2 S)
o 1 2 3 4 5 6 7 8 9 10 11 12

write order: 9,10,11,1214,61 12
An easy-to-compute function 1. If x I=y, likely f(x) != f(y)

/

In last transaction block, store checksum of rest of transaction
data in 12 = checksum(9, 10, 11)

During recovery:
If checksum does not match transaction, treat transaction as not committed

Optimizations

1. Reuse small area for journal
2. Barriers

3. Checksums

4. Circular journal

5. Metadata journal

Write Buffering Optimization

Note: after journal write, there is no rush to checkpoint
* |f system crashes, still have persistent copy of written data!

Journaling is sequential, checkpointing is random
Solution? Delay checkpointing for some time

Difficulty: need to reuse journal space
Solution: keep many transactions for un-checkpointed data

Circular Buffer

128 MB

Keep data also in memory until checkpointed on disk

Circular Buffer

0 128 MB

checkpoint and cleanup

Circular Buffer

128 MB

New transaction reuses cleaned-up space

Circular Buffer

Journal:

0 128 MB

checkpoint and cleanup

Optimizations

1. Reuse small area for journal
2. Barriers

3. Checksums

4. Circular journal

5. Metadata journal

Data Journal

0000000000
0000000000
0000000000
0000100000

TxB inode

length=3 TXE

data block (checksum)

blks=4,6,1 addr[?]=521

Example: adding a new data
block when appending to a file

Data Journal

0000000000

length=3
0000000000
= ?]=
blks=4,6,1 000107000 addr[?]=521

TxE
(checksum)

TXB 0000000000 inode
data block

Example: adding a new data
block when appending to a file

Should “changes” include data blocks?

Metadata Journal e

list of TxE

changes (checksum)

Metadata journals record changes to bytes, not contents of new blocks

Tradeoff: More work upon recovery!
Need to read existing contents of in-place data and (re-)apply changes

Logical journaling

Option 1: avoid writing disk blocks twice

Observation: some blocks (e.g., user data) could be
considered less important

Strategy: journal only metadata changes, including:
superblock, bitmaps, inodes, indirects, directories

For regular data, write it back whenever convenient. Problem?

Files may contain garbage Iif fail before writing the data.

Unordered metadata journaling

Unordered Metadata Journal

journal

10 11 12

transaction: append to inode |

Unordered Metadata Journal

journal

lﬂlﬂlllllﬂllﬂ

10 11 12

transaction: append to inode |

Unordered Metadata Journal

journal

IHIIIIIIIIHII

10 11 12

transaction: append to inode |

Unordered Metadata Journal

journal

IHIIIIIIIIHII

10 11 12

transaction: append to inode |

Unordered Metadata Journal

journal
_ IIIIIIIIHII

transaction: append to inode |

what if we crash now?

Point to garbage data?
Possibly leak sensitive data?

Solutions?

Option 2: Ordered Metadata Journaling

Still only journal metadata
But write data block before the transaction commits
No leaks of sensitive data or data loss if metadata consistent

Tip: write the “pointed-to” thing first before writing the pointer
(more generally applicable)

Ordered Journal

journal
/ \
HEOEDEEEEEEEND
o 1 2 3 4 5 6 7 8 9 10 11 12

transaction: append to inode |

Ordered Journal

journal
/ \
o 1 2 3 4 5 6 7 8 9 10 11 12

transaction: append to inode |

What happens if crash now?
B indicates D currently free, | does not point to D;
Lose D, but that might be acceptable

Ordered Journal

journal
/ \
HOEDERDOERERED
o 1 2 3 4 5 6 7 8 9 10 11 12

transaction: append to inode |

Ordered Journal

journal
/ \
el] def] e e e
o 1 2 3 4 5 6 7 8 9 10 11 12

transaction: append to inode |

Ordered Journal

journal

IHIIIIIEIIIIH

transaction: append to inode |

Ordered Journal

journal

_ IIIIIEIIIIH

1

transaction: append to inode |

Summary

Most modern file systems use journals
* Ordered metadata journaling mode is popular

FSCK is still useful for weird cases: bit flips, filesystem bugs, ...

Some file systems don’t use journals, but still usually write new
data before deleting old (copy-on-write file systems)

Need for crash consistency makes persistent storage different from
physical (main) memory

Operating Systems

NNNNNNNNNNNNNNNNNNNNNNN

Outro

Summary

* An OS is a set of abstractions, mechanisms, policies to access
your machine hardware

« OS work with, rely on, and support hardware capabilities
* When hardware changes, OS support must change

* Virtualization: getting an app to use machine as if it’'s own
« Concurrency: doing things simultaneously on a machine
* Persistence: accessing and storing data that remains after failure

OK, now what?

Go about life as usual (1/3)

 But live with a deeper appreciation of how your machines work

« Example: When you buy more memory, what do you expect to
run faster, and what won’t?

* What does your machine hardware guarantee? What doesn’t it?

Put your knowledge to use in tech work (2/3)

* You’ve programmed significantly in this course. In future:
* Become a power-user of the machine

* Debug and optimize performance for your software

* Why is ML inference slow? | have enough memory, so why does
my program run slower when | ask for more memory?

* How do you design a complex system?

» What principles should you use to organize functionality?
What functionality goes where?

Go deeper (3/3)

« Use your knowledge to solve a problem you care about

* Learn more about computer systems
* Rutgers CS curriculum: CS 519, 552, 546, 539, 553, 545, ...

 Push the boundaries of the field
* Talk to me about research

Thanks & all the best!

