
Crash Consistency

Inconsistency: a result of
redundancy (non-independence)

Knowing A limits the
possible values of B.

Inode pointer
Data block bitmap

Inode link count
Directory entry

Superblock total block count
Inode pointer

Filesystem checker: after a crash, look at data structures
on disk, and make them consistent.

100s of
checks
& fixes

Duplicate Pointers

inode
link_count = 1

block
(number 123)

inode
link_count = 1 How to fix????

Duplicate Pointers

inode
link_count = 1

block
(number 123)

inode
link_count = 1

block
(number 789)

copy

Duplicate Pointers

inode
link_count = 1

block
(number 123)

inode
link_count = 1

block
(number 789)

Simple fix!

But is this correct?

Bad Pointer

inode
link_count = 1

super block
tot-blocks=8000

9999

How to fix???

Bad Pointer

inode
link_count = 1

super block
tot-blocks=8000

Simple fix! (But is this correct?)

Problems with fsck

Problem 1:
• Not always obvious how to fix file system image

• Don’t know “correct” state, just a consistent one

• Easy way to get consistency: reformat disk!

Problem 2: fsck is very slow

Checking a 600GB disk takes ~70 minutes
ffsck: The Fast File System Checker

Ao Ma, EMC Corporation and University of Wisconsin—Madison; Chris Dragga,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Consistency Solution #2: Journaling
Goals

• Ok to do some recovery work after crash, but not to read entire disk
• Don’t move file system to just any consistent state, get correct state

(in most cases)
Strategy

• Atomicity
• Definition of atomicity for concurrency

• operations in critical sections are not interrupted by operations on
related critical sections

• Definition of atomicity for persistence
• collections of writes are not interrupted by crashes;

either (all new) or (all old) data is visible

Consistency vs Correctness
Say a set of writes moves the disk from state A to B

A B

consistent states

all states

fsck gives consistency
Atomicity gives A or B.

empty

Journaling: General Strategy
Never delete ANY old data, until, ALL new data is safely on disk

Ironically, adding redundancy to fix the problem caused by
redundancy.

Do a little extra work during regular operation, to avoid A LOT OF
extra work during recovery

Also referred to as write-ahead logging

Fight Redundancy with Redundancy
Want to replace X with Y. Original:

DISK

X f(X)
redundant

Fight Redundancy with Redundancy
Want to replace X with Y. Original:

DISK

X f(X) Yes, good time to crash
Good time to crash?

Fight Redundancy with Redundancy
Want to replace X with Y. Original:

DISK

Y f(X) bad time to crash
Good time to crash?

Fight Redundancy with Redundancy
Want to replace X with Y. Original:

DISK

Y f(Y) good time to crash
Good time to crash?

DISK

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

X f(X) good time to crash
Good time to crash?

DISK

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

X f(X)

Y

good time to crash

DISK

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

X f(X)

Y

good time to crash

f(Y)

DISK

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

Y f(X)

Y

good time to crash

f(Y)

DISK

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

Y f(Y)

Y

good time to crash

f(Y)

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

Y f(Y) good time to crash

f(Y)

DISK

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

Y f(Y) good time to crash

DISK

Fight Redundancy with Redundancy
Want to replace X with Y. With journal:

DISK

Y f(Y) With journaling, it’s
always a good time to
crash!

DISK

Inconsistency: how do we fix it?
Develop algorithm to atomically update two blocks:
Write 10 to block 0; write 5 to block 1
Assume these are only blocks in file system.
Assume: only 1 block, not multiple, can be written in one shot

Time Block 0 Block 1
1 12 3
2 12 5
3 10 5

A wrong update algorithm can lead to inconsistent states
(non-atomic updates)

don’t crash here!

Usage Scenario: Block 0 stores Alice’s bank account;
Block 1 stores Bob’s bank account; transfer $2 from Alice to Bob

Initial Solution: Journal New Data

Time Block 0 Block 1 J:2 J:3 J:valid:4
1 12 3 0 0 0
2 12 3 10 0 0
3 12 3 10 5 0
4 12 3 10 5 1
5 10 3 10 5 1
6 10 5 10 5 1
7 10 5 10 5 0

Crash here?
à Old data

Crash here?
àNew data

Scenario: Block 0 stores Alice’s bank account; Block 1 stores Bob’s bank account; transfer $2 from Alice to Bob

Let’s understand behavior if crash occurs after each write

Suppose we make updates on a copy of each block first
(note: must allocate space for these copies)

Note: every step assumes previous update committed to disk

void update_accounts(int cash1, int cash2) {
write(cash1 to block 2) // Alice backup
write(cash2 to block 3) // Bob backup
write(1 to block 4) // backup is safe
write(cash1 to block 0) // Alice
write(cash2 to block 1) // Bob
write(0 to block 4) // discard backup

}

void recovery() {
if(read(block 4) == 1) {

write(read(block 2) to block 0) // restore Alice
write(read(block 3) to block 1) // restore Bob
write(0 to block 4) // discard backup

} // no recovery needed if !(read(block 4) == 1)
}

Suppose the machine failed somewhere along the way…

Terminology
Extra blocks are called a journal

* (all blocks considered same: inode, superblock, …)

The writes to the journal are a journal transaction

The last valid bit written is a journal commit block
* journal commit relies on disk committing single-block writes fully or not at all

The writing of the actual data (in place) is called checkpoint

Approach described above: Data journaling

File System Integration

FS
Journal

Scheduler
Disk

Problems with data journaling approach

0 N-1

…

N 2N2N-1

Disadvantages?

- slightly < half of disk space is usable

- transactions copy all the data (1/2 disk bandwidth!)

- disk commit forces hardware to seek to random locations one
after another

Fix #1: Small Journals
Still need to first write all new data elsewhere before
overwriting new data

Goal:
• Reuse small area as backup for any block

How?
• Store block numbers in a transaction "header” in journal

New Layout

0 5

5,2 A B 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

A

0 5

B 5,2 A B 1

6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

Checkpoint: Writing new data to in-place locations

New Layout

A

0 5

B 5,2 A B 0

6 12111 2 3 4 7 8 9 10

journal

New Layout

A

0 5

B 5,2 A B 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

A

0 5

B 5,2 A B 0

6 12111 2 3 4 7 8 9 10

journal

New Layout

A

0 5

B 4,6 A B 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

A

0 5

B 4,6 C B 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

journal

New Layout

A

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

journal

New Layout

C A T

0 5

B 4,6 C T 1

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

Checkpoint: Writing new data to in-place locations

0 5 12111 2 3 4 7 8 9 106

journal

New Layout

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

0 5 6 12111 2 3 4 7 8 9 100 5 6 12111 2 3 4 7 8 9 10

journal

Optimizations
1. Reuse small area for journal
2. Barriers - (fsync)
3. Checksums
4. Circular journal
5. Metadata journal

Correctness depends on Ordering

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

write order: 9, 10, 11, 12, 4, 6, 12

Enforcing total ordering among these writes is inefficient
(random writes)

Instead: Use barriers w/ disk cache flush at key points (Q: when?)

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

0 5 6 12111 2 3 4 7 8 9 100 5 6 12111 2 3 4 7 8 9 10

journal

Ordering

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

write order: 9,10,11 | 12 | 4,6 | 12

Use barriers at key points in time:
1) Before journal commit, ensure journal transaction entries complete
2) Before checkpoint, ensure journal commit complete
3) Before free journal, ensure in-place updates complete
Force disk controller to commit data through fsync()/sync()

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

0 5 6 12111 2 3 4 7 8 9 100 6 12111 2 3 4 7 8 9 10

journal

Optimizations
1. Reuse small area for journal

2. Barriers

3. Checksums

4. Circular journal

5. Metadata journal

Checksums to avoid txn commit barrier

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

write order: 9,10,11 | 12 | 4,6 | 12

Can we get rid of barrier between (9, 10, 11) and 12 ?

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

0 5 6 12111 2 3 4 7 8 9 100 5 6 12111 2 3 4 7 8 9 10

journal

write order: 9,10,11 | 12 | 4,6 | 12

Checksums to avoid txn commit barrier

C A T

0 5

B 4,6 C T (ck)

6 12111 2 3 4 7 8 9 10

journal

write order: 9,10,11,12 | 4,6 | 12

In last transaction block, store checksum of rest of transaction
data in 12 = checksum(9, 10, 11)

During recovery:
If checksum does not match transaction, treat transaction as not committed

An easy-to-compute function f. If x != y, likely f(x) != f(y)

Optimizations
1. Reuse small area for journal
2. Barriers
3. Checksums
4. Circular journal
5. Metadata journal

Write Buffering Optimization
Note: after journal write, there is no rush to checkpoint

• If system crashes, still have persistent copy of written data!

Journaling is sequential, checkpointing is random

Solution? Delay checkpointing for some time

Difficulty: need to reuse journal space
Solution: keep many transactions for un-checkpointed data

T4T3T2T1

Circular Buffer

Journal:

0 128 MB

Keep data also in memory until checkpointed on disk

T4T3T2

Circular Buffer

Journal:

0 128 MB

checkpoint and cleanup

T5 T4T3T2

Circular Buffer

Journal:

0 128 MB

New transaction reuses cleaned-up space

T5 T4T3

Circular Buffer

Journal:

0 128 MB

checkpoint and cleanup

Optimizations
1. Reuse small area for journal
2. Barriers
3. Checksums
4. Circular journal
5. Metadata journal

Data Journal

TxB
length=3

blks=4,6,1

0000000000
0000000000
0000000000
0000100000

inode
…

addr[?]=521
data block TxE

(checksum)

Example: adding a new data
block when appending to a file

Data Journal

TxB
length=3

blks=4,6,1

0000000000
0000000000
0000000000
0000100000

inode
…

addr[?]=521
data block TxE

(checksum)

Actual changed data is much smaller!

Example: adding a new data
block when appending to a file

Metadata Journal

TxB
length=1

list of
changes

TxE
(checksum)

Metadata journals record changes to bytes, not contents of new blocks

Tradeoff: More work upon recovery!
Need to read existing contents of in-place data and (re-)apply changes

Logical journaling

Should “changes” include data blocks?

Option 1: avoid writing disk blocks twice
Observation: some blocks (e.g., user data) could be
considered less important

Strategy: journal only metadata changes, including:
superblock, bitmaps, inodes, indirects, directories

For regular data, write it back whenever convenient. Problem?

Files may contain garbage if fail before writing the data.

Unordered metadata journaling

Unordered Metadata Journal

?

0 5

B 0

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

journaljournal

Unordered Metadata Journal

?

0 5

B TxB B’ I’ 0

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

0 5 6 12111 2 3 4 7 8 9 100 5 6 12111 2 3 4 7 8 9 10

journaljournal

Unordered Metadata Journal

?

0 5

B TxB B’ I’ TxE

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

0 5 6 12111 2 3 4 7 8 9 100 5 6 12111 2 3 4 7 8 9 100 5 6 12111 2 3 4 7 8 9 10

Unordered Metadata Journal

?

0 5

B TxB B’ I’ TxE

6 1211

I’

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

0 5 6 12111 2 3 4 7 8 9 100 5 6 12111 2 3 4 7 8 9 10

journaljournal

Unordered Metadata Journal

?

0 5

B’ TxB B’ I’ TxE

6 1211

I’

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

what if we crash now?

0 5 6 12111 2 3 4 7 8 9 100 5 6 12111 2 3 4 7 8 9 100 5 6 12111 2 3 4 7 8 9 10

journaljournal

Point to garbage data?
Possibly leak sensitive data?

Solutions?

Option 2: Ordered Metadata Journaling
Still only journal metadata

But write data block before the transaction commits

No leaks of sensitive data or data loss if metadata consistent

Tip: write the “pointed-to” thing first before writing the pointer
(more generally applicable)

Ordered Journal

?

0 5

B 0

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

journal

0 5 6 12111 2 3 4 7 8 9 10

Ordered Journal

D

0 5

B 0

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

What happens if crash now?
B indicates D currently free, I does not point to D;
Lose D, but that might be acceptable

journal

0 5 6 12111 2 3 4 7 8 9 10

Ordered Journal

D

0 5

B TxB I’ B’ 0

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

journal

Ordered Journal

D

0 5

B TxB I’ B’ TxE

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

journal

Ordered Journal

D

0 5

B TxB I’ B’ TxE

6 1211

I’

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D

0 5

B’ TxB I’ B’ TxE

6 1211

I’

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Summary
Most modern file systems use journals

• Ordered metadata journaling mode is popular

FSCK is still useful for weird cases: bit flips, filesystem bugs, …

Some file systems don’t use journals, but still usually write new
data before deleting old (copy-on-write file systems)

Need for crash consistency makes persistent storage different from
physical (main) memory

Operating Systems

Outro

Summary
• An OS is a set of abstractions, mechanisms, policies to access

your machine hardware

• OS work with, rely on, and support hardware capabilities
• When hardware changes, OS support must change

• Virtualization: getting an app to use machine as if it’s own
• Concurrency: doing things simultaneously on a machine
• Persistence: accessing and storing data that remains after failure

OK, now what?

Go about life as usual (1/3)
• But live with a deeper appreciation of how your machines work

• Example: When you buy more memory, what do you expect to
run faster, and what won’t?

• What does your machine hardware guarantee? What doesn’t it?

Put your knowledge to use in tech work (2/3)
• You’ve programmed significantly in this course. In future:
• Become a power-user of the machine
•Debug and optimize performance for your software

• Why is ML inference slow? I have enough memory, so why does
my program run slower when I ask for more memory?

•How do you design a complex system?
•What principles should you use to organize functionality?

What functionality goes where?

Go deeper (3/3)
• Use your knowledge to solve a problem you care about

• Learn more about computer systems
• Rutgers CS curriculum: CS 519, 552, 546, 539, 553, 545, …

• Push the boundaries of the field
• Talk to me about research

Thanks & all the best!

