
Persistence

Efficiency
How can we avoid this excessive I/O for basic ops?

Cache for:
- reads
- write buffering

Write Buffering
Why does procrastination help?

Overwrites, deletes, scheduling

Shared structs (e.g., bitmaps+dirs) often overwritten.

We decide: how much to buffer, how long to buffer…
- tradeoff durability vs. performance

How to allocate file data to
disk blocks?

Disk layout of data matters!
• Why?
• Positioning latency: disk rotation; seek
• Sequential reads are faster than random reads

Allocation Strategies
Many different approaches

• Contiguous
• Extent-based
• Linked
• File-allocation Tables
• Indexed
• Multi-level Indexed

Questions
• Amount of fragmentation (internal and external)

– free space that can’t be used
• Ability to grow file over time?
• Performance of sequential accesses (contiguous layout)?
• Speed to find data blocks for random accesses?
• Wasted space for meta-data overhead (everything that isn’t data)?

• Meta-data must be stored persistently too!

Contiguous Allocation
Allocate each file to contiguous sectors on disk

• Meta-data:
• OS allocates by finding sufficient free space

• Must predict future size of file; Should space be reserved?
• Example: IBM OS/360

A A A B B B B C C C

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data?
+ Little overhead for meta-data

+ Excellent performance

+ Simple calculation

- Horrible external frag (needs periodic compaction)

- May not be able to without moving

Starting block and size of file

Small # of Extents
Allocate multiple contiguous regions (extents) per file

• Meta-data:

D A A A B B B B C C C B BD D

A A A B B B B C C C

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data?
+ Still small overhead for meta-data

+ Still good performance

+ Still simple calculation

- Helps external fragmentation

- Can grow (until run out of extents)

Small array (2-6) designating each extent
Each entry: starting block and size

Linked Allocation
Allocate linked-list of fixed-sized blocks (multiple sectors)

• Meta-data:

• Examples: TOPS-10, Alto

D A A A B B B B C C C B BD D D DB

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data? - Waste pointer per block

+/- Depends on data layout

- Ridiculously poor

+ No external frag (use any block);

+ Can grow easily

Location of first block of file
Each block also contains pointer to next block

File-Allocation Table (FAT)
Variation of Linked allocation

• Keep linked-list information for all files in on-disk FAT table
• Meta-data: Location of first block of file

• And, FAT table itself

Draw corresponding FAT Table?

D A A A B B B B C C C B BD D D DB

Example of a FAT

https://www.youtube.com/watch?v=mgQtlXBxH0c

File-Allocation Table (FAT)
Variation of Linked allocation

• Keep linked-list information for all files in on-disk FAT table
• Meta-data: Location of first block of file

• And, FAT table itself

Draw corresponding FAT Table?
Comparison to Linked Allocation

• Same basic advantages and disadvantages
• Disadvantage: Read from two disk locations for every data read
• Optimization: Cache FAT in main memory

– Advantage: Greatly improves random accesses
– What portions should be cached? Scale with larger file systems?

D A A A B B B B C C C B BD D D DB

Indexed Allocation
Allocate fixed-sized blocks for each file

• Meta-data:
• Allocate space for pointers at file creation time

Advantages
• No external fragmentation
• Files can be easily grown up to max file size
• Supports random access

Disadvantages
• Large overhead for meta-data:

– Wastes space for unneeded pointers (most files are small!)

D A A A B B B B C C C B BD D D DB

Fixed-sized array of block pointers

Multi-Level Indexing
Variation of Indexed Allocation

• Dynamically allocate hierarchy of pointers to blocks as needed
• Meta-data: Small number of pointers allocated statically

• Additional pointers to blocks of pointers
• Examples: UNIX FFS-based file systems, ext2, ext3

Comparison to Indexed Allocation
• Advantage: Does not waste space for unneeded pointers

– Still fast access for small files
– Can grow to what size?

• Disadvantage: Need to read indirect blocks of pointers to calculate addresses (extra
disk read)

– Keep indirect blocks cached in main memory

indirect
double
indirect indirect

triple
indirect

Flexible # of Extents
Modern file systems:

Dynamic multiple contiguous regions (extents) per file
• Organize extents into multi-level tree structure

• Each leaf node: starting block and contiguous size
• Minimizes meta-data overhead when have few extents
• Allows growth beyond fixed number of extents

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data?
+ Relatively small overhead

+ Still good performance

+/- Some calculations depending on size

+ Both reasonable

+ Can grow

Assume Multi-Level Indexing
Simple approach
More complex file systems build from these basic

data structures

Summary/Future
We’ve described a very simple FS.
- basic on-disk structures
- the basic ops

Future questions:
- how to handle crashes?

Crash Consistency
Questions answered:
What benefits and complexities exist because of data

redundancy?
What can go wrong if disk blocks are not updated consistently?
How can file system be checked and fixed after crash?
How can journaling be used to obtain atomic updates?
How can the performance of journaling be improved?

Data Redundancy
Definition:

if A and B are two pieces of data,
and knowing A eliminates some or all values B could be,
there is redundancy between A and B

File system examples:
• Superblock: field contains total blocks in FS
• Inodes: field contains pointer to data block
• Is there redundancy between these two types of fields?

Why or why not?

File System Redundancy Example
Superblock: field contains total number of blocks in FS
DATA = N

Inode: field contains pointer to data block; possible DATA?
DATA in {0, 1, 2, …, N - 1}

Pointers to block N or after are invalid!
Total-blocks field has redundancy with inode pointers

Pros and CONs of Redundancy
Redundancy may improve:

- reliability
• Superblocks in FFS

- performance
• bitmaps

But Redundancy could hurt!
- capacity
- consistency

• Redundancy implies certain combinations of values are
(possibly) illegal

• Illegal combinations: inconsistency

Consistency Examples
Assumptions:
Superblock: field contains total blocks in FS.
DATA = 1024
Inode: field contains pointer to data block.
DATA in {0, 1, 2, …, 1023}

Scenario 1: Consistent or not?
Superblock: field contains total blocks in FS.
DATA = 1024
Inode: field contains pointer to data block.
DATA = 241
Consistent

Scenario 2: Consistent or not?
Superblock: field contains total blocks in FS.
DATA = 1024
node: field contains pointer to data block.
DATA = 2345
Inconsistent

Why is consistency challenging?
File system may perform several disk writes to redundant blocks

If file system is interrupted between writes, may leave data in
inconsistent state

What can interrupt write operations?
- power loss
- kernel panic
- reboot

Bad things that can happen: inconsistency, garbage data, data loss,

Question for You…
File system is appending to a file and must update:

- inode
- data bitmap
- data block

What happens if crash after only updating some blocks?
a) bitmap:
b) data:
c) inode:
d) bitmap and data:
e) bitmap and inode:
f) data and inode:

lost block & data

Data loss, but otherwise OK
point to garbage (what?), another file may use
lost block & data (nothing can reach it)
point to garbage

another file may use (from bitmap)

How can file system fix Inconsistencies?
Solution #1:

FSCK = file system checker
Strategy:

After crash, scan whole disk for contradictions and “fix” if
needed
Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?

Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be 1; else bit is 0

Fsck Checks
Hundreds of types of checks over different fields…
Do superblocks match?
Do directories contain “.” and “..”?
Do number of dir entries equal inode link counts?
Do different inodes ever point to same block?
…
How to solve problems?

Link Count (example 1)
Dir Entry

Dir Entry

inode
link_count = 1

How to fix to have consistent file system?

Link Count (example 1)
Dir Entry

Dir Entry

inode
link_count = 2 Simple fix!

Link Count (example 2)

inode
link_count = 1

How to fix???

Link Count (example 2)

inode
link_count = 1

Dir Entry fix!

ls -l /
total 150
drwxr-xr-x 401 18432 Dec 31 1969 afs/
drwxr-xr-x. 2 4096 Nov 3 09:42 bin/
drwxr-xr-x. 5 4096 Aug 1 14:21 boot/
dr-xr-xr-x. 13 4096 Nov 3 09:41 lib/
dr-xr-xr-x. 10 12288 Nov 3 09:41 lib64/
drwx------. 2 16384 Aug 1 10:57 lost+found/
...

Data Bitmap

inode
link_count = 1

block
(number 123)

data bitmap
0011001100

for block 123

How to fix?

Data Bitmap

inode
link_count = 1

block
(number 123)

data bitmap
0011001101

for block 123

Simple fix!

