Persistence

Abstractions
Resource management
(isolation; efficiency)

Virtualization (CPU, memory)
Concurrency

Interaction with Devices

Disks and Persistence

Store data users care about: persist beyond reboots

Backing store for paging

Space multiplexing (coexist)

Shared view of storage!

Permissions

Intelligence in software, mostly

Motivation

What good is a computer without any I/O devices?

- keyboard, display, disks

We want:

- **H/W** that will let us plug in different devices
- OS that can interact with different combinations

Disk

Filesystems

Abstractions over blocks of data

Flat mapping of name to blocks? E.g. hash table

Something a bit more flexible:

A hierarchy

```
creat(), open(),
  read(), write(),
mkdir(), readdir(), ...
  link(), unlink()
```


Filesystems

Why are file systems useful?

- Durability across restarts
- Naming and organization
- Sharing among programs and users

Why interesting?

- Crash recovery
- Performance
- API design for sharing
- Security for sharing
- Abstraction is useful: pipes, devices,
 - /proc, /afs, etc.

Filesystems

API example -- UNIX/Posix/Linux/xv6/&c:

```
fd = open("x/y", -);write(fd, "abc", 3);link("x/y", "x/z");unlink("x/y");
```

- Plan 9 OS (Bell labs) Attempts to structure entire OS as a filesystem
- http://plan9.bell-labs.com/plan9/

Questions for filesystems

- What on-disk structures to represent files and directories?
 - Contiguous, Extents, Linked, FAT, Indexed, Multi-level indexed
 - Which are good for different metrics?
- What disk operations are needed for:
- make directory
- open file
- write/read file
- close file

FS Implementation

- 1. On-disk structures
 - how does file system represent files, directories?
- 2. Access methods
 - what steps must reads/writes take?

Part 1: Disk Structures

Persistent Store

Given: large array of blocks on disk

Want: some structure to map files to disk blocks

Similarity to Memory?

Physical View

On-Disk Structures

- data block
- inode table
- indirect block
- directories
- data bitmap
- inode bitmap
- superblock

FS Structs: Empty Disk

Assume each block is 4KB

Data Blocks

Inodes

One Inode Block

Each inode is typically 256 bytes (depends on the FS, maybe 128 bytes)

4KB disk block

16 inodes per inode block.

inode	inode	inode	inode
16	17	18	19
inode	inode	inode	inode
20	21	22	23
inode	inode	inode	inode
24	25	26	27
inode	inode	inode	inode
28	29	30	31

Inode

```
type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)
```

Inodes

Inode

type
uid
rwx
size
blocks
time
ctime
links_count
addrs[N]

Assume single level (just pointers to data blocks)

What is max file size?
Assume 256-byte inodes (all can be used for pointers)
Assume 4-byte addrs

How to get larger files?

Indirect blocks are stored in regular data blocks.

what if we want to optimize for small files?

Better for small files

Inode

```
type
        uid
        rwx
        size
  Blocks (optional)
        time
       ctime
    links_count
    direct_ptr[N]
 indirect_ptr[N+X]
//Some stat structure
```

Assume 256 byte inodes (16 inodes/block). What is offset for inode with number 0?

Assume 256 byte inodes (16 inodes/block). What is offset for inode with number 4?

Assume 256 byte inodes (16 inodes/block). What is offset for inode with number 40?

File Organization: The inode

- Each inode is referred to by inode number.
 - by inode number, File system calculate where the inode is on the disk.
 - Ex: inode number: 32
 - Calculate the offset into the inode region (32 x sizeof(inode) (256 bytes) = 8192
 - Add start address of the inode table(12 KB) + offset into inode region = 20 KB

Directories

File systems vary

Common design:

Store directory entries in data blocks

Large directories just use multiple data blocks

Use bit in inode to distinguish directories from files

Various formats could be used

- lists
- b-trees

Simple Directory List Example

valid	name	inode
1		134
1	••	35
1	foo	80
1	bar	23

unlink("foo")

Hard links and Soft (symbolic) links

Hard Link:

- A hard link acts as a copy (mirrored) of the selected file. It accesses the data available in the original file.
- If earlier selected file is deleted, the hard link to the file will still contain the data of that file.

In /path/to/source /path/to/link

Soft Link:

- A soft link (also known as symbolic link) acts as a pointer or a reference to the file name. It does not access the data available
- in the original file. If the earlier file is deleted, the soft link will be pointing to a file that does not exist anymore

In -s /path/to/source /path/to/link

Allocation

How do we find free data blocks or free inodes?

Free list

Bitmaps

Tradeoffs!

Bitmaps?

Opportunity for Inconsistency

(Need file system checking)

Superblock

Need to know basic FS configuration metadata, like:

- block size
- # of inodes

Store this in superblock

Superblock – Real FS (also FUSE)

```
Struct superblock{
    start address of inode bitmap
    start address of data block bitmap
    start address of inode region
    start address of data block region
    //Anything else that is required
}
```

Superblock

On-Disk Structures

Part 2 : Operations

- create file
- write
- open
- read
- close

How do they affect the data structures in the filesystem?

create /foo/bar

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data
		read	read		read	
	read write		read			read
	WITE					write
		•		read write	•	
			write			

What needs to be read and written?

open /foo/bar

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
		read			d		
			read		read		
				read		read	

write to /foo/bar (assume file exists and has been opened)

data	inode	root	foo	bar	root	foo	bar
bitmap	bitmap	inode	inode	inode	data	data	data
read write				read write			write

read /foo/bar – assume opened

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
				read			
							read
				write			

close /foo/bar

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data

nothing to do on disk!