Persistence

NNNNNNNNNNNNNNNNNNNNNNN

Abstractions Virtualization (CPU, memory)
Resource management Concurrency

Isolation; efficienc . . .
() Interaction with Devices

Store data users care about:

ersist beyond reboots
Disks and Persistence / P y

T~ Backing store for paging

Space multiplexing Shared view of
(coexist) storage!

Intelligence in software, mostly

Permissions

Motivation

What good is a computer without any 1/0O devices?
- keyboard, display, disks

We want:
- H/W that will let us plug in different devices
- OS that can interact with different combinations

Rotates this way
—

Filesystems

Abstractions over blocks of data

Flat mapping of name to blocks? E.g. hash table /

foo bar

Something a bit more flexible:
A hierarchy

bar.txt bar foo
creat(), open(),
read(), write(), bar.txt
mkdir(), readdir(), ..
link(), unlink()

Filesystems

Why are file systems useful?

- Durability across restarts

- Naming and organization

- Sharing among programs and users

Why interesting?

- Crash recovery

- Performance

- API design for sharing

- Security for sharing

- Abstraction is useful: pipes, devices,
- /proc, /afs, etc.

Filesystems

APl example -- UNIX/Posix/Linux/xv6/&c:

- fd = open("x/y", -);
- write(fd, "abc", 3);
- link("x/y", "x/z");

- unlink("x/y");

- Plan 9 OS (Bell labs) - Attempts to structure entire
OS as a filesystem

- http://plan9.bell-labs.com/plan9/

Questions for filesystems

What on-disk structures to represent files and directories?
Contiguous, Extents, Linked, FAT, Indexed, Multi-level indexed
Which are good for different metrics?

What disk operations are needed for:

. make directory
. open file
. write/read file

. close file

FS Implementation

1. On-disk structures
- how does file system represent files, directories?

2. Access methods
- what steps must reads/writes take?

Part 1: Disk Structures

Persistent Store

Given: large array of blocks on disk
Want: some structure to map files to disk blocks

DDDDDDDD
0 7
DDDDDDDD
16 23
DbDDDDDDD
32 39
DDDDDDDD
48 55

DDDDDDDD
8 15
DDDDDDDD
24 31
DDDDDDDD
40 47
DDDDDDDD
56 63

Similarity to Memory?

Same principle:
map logical abstraction to physical resource

Physical View

Process 1

Process 3
Process 2

Logical View: Address Spaces

On-Disk Structures

- data block

- Inode table

- Indirect block
- directories

- data bitmap

- Inode bitmap
- superblock

FS Structs: Empty Disk

DDDDDDDD
0 7
DDDDDDDD
16 23
DDDDDDDD
32 39
DDDDDDDD
48 55

DDDDDDDD
8 15
DDDDDDDD
24 31
DDDDDDDD
40 47
DDDDDDDD
56 63

Assume each block is 4KB

Data Blocks

DDDDDDDD
0 7
DDDDDDDD
16 23
DDDDDDDD
32 39
DDDDDDDD
48 55

DDDDDDDD
8 15
DDDDDDDD
24 31
DDDDDDDD
40 47
DDDDDDDD
56 63

Inodes

I 51 0
0 7
DDDDDDDD
16 23
DDDDDDDD
32 39
DDDDDDDD
48 55

DDDDDDDD
8 15
DDDDDDDD
24 31
DDDDDDDD
40 47
DDDDDDDD
56 63

One Inode Block

Each inode is typically 256
bytes (depends on the FS,
maybe 128 bytes)

inodelinodelinodejinode
16 14 18 19
_ |node
: : inode inodelinode
16 inodes per inode block. E

inodejinodejinode
28 29 30

Inode

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)

Blocks
time (access)
ctime (create)

links_count (# paths)
addrs[N] (N data blocks)

Inodes

0 7 8 15
I II}II\IIIIIIII
4

Inode

type
uid

rwx
size

blocks
time
ctime
links_count
addrs[N]

256 /4= 64
64 * 4K = 256 KB!

Assume single level (just
pointers to data blocks)

What is max file size?

Assume 256-byte inodes (all can
be used for pointers)

Assume 4-byte addrs

How to get larger files?

Indirect blocks are stored in what if we want to
regular data blocks. optimize for small files?

Better for small files

Inode

type

uid

rwx

size
Blocks (optional)

time

ctime
links_count
direct_ptr[N]
indirect_ptr[N+X]
//Some stat structure

Assume 256 byte inodes (16 inodes/block).
What is offset for inode with number 0?

I 51 50
0 7

DDDDDDDD
16 23
DDDDDDDD
32 39
DDDDDDDD
48 55

DDDDDDDD
8 15
DDDDDDDD
24 31
DDDDDDDD
40 47
DDDDDDDD
56 63

Assume 256 byte inodes (16 inodes/block).
What is offset for inode with number 47

I 51 50
0 7

DDDDDDDD
16 23
DDDDDDDD
32 39
DDDDDDDD
48 55

DDDDDDDD
8 15
DDDDDDDD
24 31
DDDDDDDD
40 47
DDDDDDDD
56 63

Assume 256 byte inodes (16 inodes/block).
What is offset for inode with number 407?

I 51 50
0 7

DDDDDDDD
16 23
DDDDDDDD
32 39
DDDDDDDD
48 55

DDDDDDDD
8 15
DDDDDDDD
24 31
DDDDDDDD
40 47
DDDDDDDD
56 63

File Organization: The inode

« Each inode is referred to by inode number.
* by inode number, File system calculate where the inode is on the disk.

* EX: inode number: 32
 Calculate the offset into the inode region (32 x sizeof(inode) (256 bytes) = 8192
» Add start address of the inode table(12 KB) + offset into inode region = 20 KB

The Inode table
iblock 0 iblock 1 iblock 2 iblock 3 iblock 4

0 1 2

16 17 18 19 33 34 35 48 49 50 51 64 65 66 67

20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

Super

24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

6
1
0
1 28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

6KB 20KB 24KB 28KB 32KB

3
7
1
1
1
5
1

OKB 4KB 8KB 12KB

Directories

File systems vary

Common design:
Store directory entries in data blocks

Large directories just use multiple data blocks
Use bit in inode to distinguish directories from files

Various formats could be used
- lists
- b-trees

Simple Directory List Example

valid name inode
1 : 134
1 .. 35
1 foo 80
1 bar 23

unlink(“foo”)

Hard links and Soft (symbolic) links

Hard Link :

« A hard link acts as a copy (mirrored) of the selected file. It accesses the data available
in the original file.

 If earlier selected file is deleted, the hard link to the file will still contain the data of that
file.

In /path/to/source /path/to/link
Soft Link :

« A soft link (also known as symbolic link) acts as a pointer or a reference to the file
name. It does not access the data available

* in the original file. If the earlier file is deleted, the soft link will be pointing to a file that
does not exist anymore

In -s /path/to/source /path/to/link

Allocation

How do we find free data blocks or free inodes?
Free list
Bitmaps

Tradeoffs!

Bitmaps?

1B 15 B Y
0 7
DDDDDDDD
16 23
bDbbDbDDDDD
32 39
DDDDDDDD
48 55

DDDDDDDD
8 15
DDDDDDDD
24 31
DbDDDDDDD
40 47
DDDDDDDD
56 63

Opportunity for Inconsistency

EECRNNNNEN DPDooPpPEED
0 7 8 15
bDbbDDDDDD DDDDDDDD
16 23 24 31
bDbbDDDDD DDDDDDDD
32 39 40 47
bDbpbDDDDDD DDDDDDDD
48 55 56 63

(Need file system checking)

Superblock

Need to know basic FS configuration metadata, like:
- block size
- # of inodes

Store this in superblock

Superblock — Real FS (also FUSE)

Struct superblock{
start address of inode bitmap
start address of data block bitmap
start address of inode region
start address of data block region
//Anything else that is required

Superblock

151 1N o
0 7
DDDDDDDD
16 23
DDDDDDDD
32 39
DDDDDDDD
48 55

DDDDDDDD
8 15
DDDDDDDD
24 31
DDDDDDDD
40 47
DDDDDDDD
56 63

On-Disk Structures

Super Block
Data Bitmap

Data Block

directories indirects

Inode Bitmap
Inode Table

Part 2 : Operations

- create file
- write

- open

- read

- close

How do they affect the data structures in the
filesystem?

create /foo/bar

data inode root foo bar root foo
bitmap bitmap |[inode inode inode | data data
read
read
read
read
read
write
write
read
write
write

What needs to be read and written?

open /foo/bar

data inode root foo bar root foo bar
bitmap bitmap |[inode inode inode | data data data
read
read
read
read
read

write to /foo/bar (assume file exists and has been opened)

data inode root foo bar root foo bar
bitmap bitmap |[inode inode inode | data data data
read
read
write
write

write

read /foo/bar — assume opened

data inode root foo bar root foo bar

bitmap bitmap |[inode inode inode | data data data
read

read

write

close /foo/bar

data inode root foo bar root foo bar
bitmap bitmap |[inode inode inode | data data data

nothing to do on disk!

