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Page Replacement Comparison

Add more physical memory, what happens to performance?

- LRU, OPT: Add more memory, guaranteed to have fewer (or
same number of) page faults

- Smaller memory sizes are guaranteed to contain a subset
of larger memory sizes

- Stack property: smaller cache a subset of bigger cache

- FIFO: Add more memory, usually have fewer page faults

- Belady’s anomaly: but there are cases where we have
more page faults!



Consider access stream: 1, 2, 3,4,1,2,5,1,2,3,4,5
Consider physical memory size: 3 pages vs. 4 pages

How many misses with FIFO?

3 pages: 9 misses
4 pages: 10 misses



Problems with LRU-based Replacement

LRU does not consider frequency of accesses

- |s a page accessed once in the past equal to one
accessed N times?

- Common workload problem:

- Scan (sequential read, never used again) one large data region
flushes memory

Solution: Track frequency of accesses to page

Pure LFU (Least-frequently-used) replacement
- Problem: LFU can never forget pages from the far past



Implementing LRU

Perfect LRU on Software
- OS maintains ordered list of physical pages by reference time
- When page is referenced: Move page to front of list
- When need victim: Pick page at back of list
- Trade-off: Slow on memory reference, fast on replacement

Perfect LRU on Hardware
- Associate timestamp with each page (e.g., PTE)
- When page is referenced: Associate current system timestamp with page
- When need victim: Scan through PTEs to find oldest timestamp
- Trade-off: Fast on memory reference, slow on replacement (especially as
size of memory grows)
In practice, do not implement Perfect LRU
- LRU is an approximation anyway, so approximate more
- Goal: Find an old page, but not necessarily the oldest



Clock Algorithm

Hardware
- Keep use (or reference) bit for each page frame
- When page is referenced: set use bit

Operating System
- Page replacement: Look for page with use bit cleared
(has not been referenced for a while)

- Implementation:
- Keep pointer to last examined page frame (“clock hand”)
- Traverse pages in circular fashion (like a clock)
- Clear use bits as you search
- Stop when find page with already cleared use bit, replace this page
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Clock Extensions

Use modified (“dirty”) bit to prefer to retain modified pages in
memory

- Intuition: More expensive to replace dirty pages
- Modified pages must be written to disk, clean pages do not have to be

- First replace pages that have use bit and modified bit cleared
Replace multiple pages at once

- Intuition: Expensive to run replacement algorithm and to write single
block to disk

- Find multiple victims each time and track free list

Add software counter (“chance”) to track use frequency
- Intuition: Want to differentiate pages by how much they are accessed
- Increment software counter if use bitis O
- Replace when chance exceeds some specified limit



What if no hardware support?

What can the OS do if hardware does not have use bit
(or dirty bit)?
. Can the OS “emulate” these bits?

Think about this question:

. Can the OS get control (i.e., generate a trap) every time use
bit should be set? (i.e., when the page is accessed?)



Conclusion

lllusion of virtual memory: Processes can run when the sum of
virtual address spaces is larger than physical memory

Mechanism:
Extend page table entry with “present” bit

OS handles page faults (or page misses) by reading in the desired page
from disk

Policy:
Page selection — demand paging, prefetching, hints
Page replacement — OPT, FIFO, LRU, others

Implementations (clock) approximate LRU
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Concurrency

Questions answered:

Why is concurrency useful?

What is a thread and how does it differ from processes?

What can go wrong if scheduling of critical sections is not atomic?



Motivation for concurrency: Blocking

« Operations proceeding at the same time: blocking for 1/0, while doing other
useful work

« Example: web server
« Serve the first request by reading a file from disk
« Serve a second request by running computation



Motivation for Concurrency: Parallelism
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Motivation for Concurrency: Parallelism
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Motivation

CPU Trend: Same speed, but multiple cores
Goal: Write applications that fully utilize many cores

Option 1: Build apps from many communicating processes
« Example: Chrome (process per tab)
« Communicate via pipe() or similar

Pros?
« Don’t need new abstractions; good for security

Cons?
« Cumbersome programming
« High communication overheads
« Expensive context switching (why expensive?)



Concurrency: Option 2

New abstraction: thread

Threads are like processes, except:
multiple threads of same process share an address
space

Divide large task across several cooperative threads
Communicate through shared address space



Common Programming Models

Multi-threaded programs tend to be structured as:

* Producer/consumer
Multiple producer threads create data (or work) that is
handled by one of the multiple consumer threads

* Pipeline
Task is divided into series of subtasks, each of which is
handled in series by a different thread

* Defer work with background thread

One thread performs non-critical work in the background
(when CPU idle)



CPU 1 CPU 2 RAM

running running
thread 1 thread 2

S I S E—

What state do threads share?



CPU 1 CPU 2 RAM

running running PageDir A

thread 1 thread 2 PageDir B
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What threads share page directories?



running running
thread 1 thread 2

PageDir A

PageDir B
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Do threads share Instruction Pointer?



Virt Mem
(PageDir A)

running running
thread 1 thread 2

PageDir A

PageDir B

Cove [reap]



running running
thread 1 thread 2

PageDir A

PageDir B

Virt Mem
pagenir o) R i
Share code, but each thread may be executing
different code at the same time

- Different Instruction Pointers
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thread 1 thread 2
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PageDir B
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(PageDir A) CODE | HEAP

Do threads share stack pointer?
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threads executing different
functions need different stacks



THREAD VS. Process

Multiple threads within a single process share:
* Process ID (PID)

« Address space
« Code (instructions)
* Most data (heap)

 Open file descriptors
 Current working directory
» User and group id

Each thread has its own
* Thread ID (TID)
» Set of registers, including Program counter and Stack pointer

o Stack for local variables and return addresses
(in same address space)



THREAD API

Variety of thread systems exist
« POSIX Pthreads

Common thread operations
» Create
« Exit
« Join (instead of wait() for processes)



OS Support: Approach 1

User-level threads: Many-to-one thread mapping

* Implemented by user-level runtime libraries
« Create, schedule, synchronize threads at user-level

« OS is not aware of user-level threads
« OS thinks each process contains only a single thread of control

Advantages
* Does not require OS support; Portable

« Can tune scheduling policy to meet application demands
* Lower overhead thread operations since no system call

Disadvantages?
« Cannot leverage multiprocessors
 Entire process blocks when one thread blocks



OS Support: Approach 2

Kernel-level threads: One-to-one thread mapping
« OS provides each user-level thread with a kernel thread
« Each kernel thread scheduled independently
« Thread operations (creation, scheduling, synchronization)
performed by OS
Advantages
« Each kernel-level thread can run in parallel on a multiprocessor
« When one thread blocks, other threads from process can be
scheduled
Disadvantages
» Higher overhead for thread operations
* OS must scale well with increasing number of threads



Thread Schedule #1

balance = balance + 1: balance at 0x9cd4

Thread 1 Thread 2
State: rocess
Ox9cd4: 100 P %eax: ? %eax: ?
. 2 control  Josrip: ox195 %rip: Ox195
%rip = 0x195 blocks:
T1 * @x195 mov 0x9cd4,

« Ox19a add $0x1,
* 0x19d mov , 0x9cd4



Thread Schedule #1

State:
0x9cd4: 100 Process
100 control
%rip = 0x19a blocks:
e 0x195
T1 * . 0x19a
e Ox19d

%eax: ?
%rip: 0x195

mov 0x9cd4,
add $0x1,

mov ,

%eax: ?
%rip: 0x195

Ox9cd4




Thread Schedule #1

State:

Ox9cd4: 100 process
: 101 control

%rip = 0x19d blocks:

¢ 0x195

e Ox19a
& ' e Ox19d

%eax: ?
%rip: 0x195

mov 0x9cd4,
add $0x1,

mov ,

%eax: ?
%rip: 0x195

Ox9cd4




Thread Schedule #1

State:
Ox9cd4: 101 process
: 101 control
%rip = 0xla2 blocks:
« 0x195
e Ox19a

. 1
1 ’ 0x19d

%eax: ?
%rip: 0x195

mov 0x9cd4,
add $0x1,

mov ,

%eax: ?
%rip: 0x195

Ox9cd4




Thread Schedule #1

State:

rocess
Ox9cd4: 101 P %eax: ? %eax: ?

- 101 control  Mosrip: 0x195 %rip: 0x195
%rip = 0xla2 blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,
T1 ¢ 0x19d mov , 0x9cd4

Thread Context Switch



Thread Schedule #1

State:

Ox9cd4: 101 Process %eax: 101 %eax: ?
. 2 control  |orip: ox1a2 %rip: 0x195
%rip = @0x195 blocks:
e 0x195 mov 0x9cd4,
T2

e Ox19a add $0x1,
e Ox19d mov , 0x9cd4



Thread Schedule #1

State: rocess
Ox9cd4: 101 P %eax: 101 %eax: ?

- 101 control  |%rip: ox1a2 %rip: 0x195
%rip = 0x19a blocks:

e 0x195 mov 0x9cd4,

T2 * « 0x19a add $0x1,
. 0x19d mov , 0x9cd4




Thread Schedule #1

State:
Ox9cd4: 101 ProcCess Joeax: 101

%eax: ?
: 102 control |%rip: Ox1a2 %rip: 0x195
%rip = 0x19d blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,

T2 * ¢ 0x19d mov , 0x9cd4




Thread Schedule #1

State:
0x9cd4: 102 ProCess  loeax: 101

%eax: ?
: 102 control |%rip: 0x1a2 %rip: 0x195
%rip = 0xla2 blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,
e Ox19d mov , 0x9cd4

S




Thread Schedule #1

State: process
Ox9cd4: %eax: 101 %eax: ?
control
102 blocks: %rip: Ox1a2 %rip: 0x195
%rip = 0xla2 '

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,

T « 0x19d mov "

Ox9cd4

Desired Result!



Let’s consider another
schedule...



Thread Schedule #2

State:
Ox9cd4: 100 process [%eax:? %eax: ?
o/oeax . ? Control %rip: 0x195 %rip: 0x195
%Srip = 0x195 blocks:

T1 e 0x195 mov 0x9cd4,

e Ox19a add $0x1,
e Ox19d mov , 0x9cd4



Thread Schedule #2

State:
%eax: ?

0x9cd4: 100 process &, . .-

o . o€aX:

seax: 100 control  Rorip: 0x195 %rip: 0x195
%rip = 0x19a blocks:

e 0x195 mov 0x9cd4,
T1 « 0x19a add $0x1,
e Ox19d mov , 0x9cd4



Thread Schedule #2

State: . -
0x9cd4: 100 process [7°eax:? oeax: ?

0 %rip: 0x195 %rip: 0x195
seax: 101 control

%rip = 0x19d blocks:

« O0x195 mov 0x9cd4,
« 0x19a add $0x1,
T e 0x19d mov , 0x9cd4

Thread Context Switch



Thread Schedule #2

State:
Ox9cd4: 100 process |%eax: 101 %eax: ?
%eaXx:' ? contro| [|%rip: 0x19d %rip: 0x195
%Srip = 0x195 blocks:

T2 e 0x195 mov 0x9cd4,

e Ox19a add $0x1,
e Ox19d mov , 0x9cd4



Thread Schedule #2

State:
Ox9cd4: 100 ProcCess |oeax: 101

%eax: ?
%eax: 100 control |%rip: 0x19d %rip: 0x195
%rip = 0x19a blocks:

e Ox195 mov 0x9cd4,
T2 e Ox19a add $0x1,
e Ox19d mov , 0x9cd4




Thread Schedule #2

State:
Ox9cd4: 100 Process |%eax: 101

%eax: ?
%eax: 101 control %rip: 0x19d %rip: 0x195
%srip = 0x19d blocks:

e Ox195 mov 0x9cd4,
e Ox19a add $0x1,
T2 e 0x19d mov , 0x9cd4




Thread Schedule #2

State:
Ox9cd4: 101 process |%eax: 101

%eax: ?
%rip = 0xla2 blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,
e Ox19d mov , 0x9cd4

T2



Thread Schedule #2

State:

0x9cd4: 101 Process 1o .« 101
%eax: 101 control  |%rip: 0x19d
%rip = 0xla2 blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,

e Ox19d mov , 0x9cd4
T2

Thread Context Switch



Thread Schedule #2

State:
%eax: 101

0x9cd4: 101 Process  Noeax: 101
oeax: 101 control  J%rip: 0x19d %rip: Ox1a2
%rip = 0x19d blocks:

e Ox195 mov 0x9cd4,
e Ox19a add $0x1,
T1 e 0x19d mov , 0x9cd4



Thread Schedule #2

State:
%eax: 101

0x9cd4: 101 ProCess  Roeax: 101
%eax: 101 control J%rip: Ox1a2 %rip: Ox1a2
%rip = 0xla2 blocks:

e Ox195 mov 0x9cd4,
e Ox19a add $0x1,

e Ox19d mov , 0x9cd4
T1



Thread Schedule #2

State:
0x9cd4: 101 Process  HNoeax: 101 %eax: 101
%eax: 101 control J%rip: Ox1a2 %rip: Ox1a2
%rip = 0xla2 blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,
e Ox19d mov , 0x9cd4

T1

WRONG Result! Final value of balance is 101



Timeline View

Thread 1

mov 0x123, %eax
add %0x1, %eax
movVv %eax, 0x123

Thread 2

mov 0x123, Y%eax
add %0x2, %eax

movV %eax, 0x123

How much is added to shared variable?

3: correct!



Timeline View

Thread 1
mov 0x123, Y%eax
add %0x1, %eax

movV %eax, 0x123

How much is added?

Thread 2

mov 0x123, Y%eax

add %0x2, %eax
mov %eax, 0x123

2: incorrect!



Timeline View
Thread 1

mov 0x123, Y%eax
add %0x1, %eax

mov %eax, 0x123

How much is added?

Thread 2
mov 0x123, Y%eax

add %0x2, %eax

mov %eax, 0x123

1: incorrect!



Timeline View

Thread 1 Thread 2
mov 0x123, Y%eax
add %0x2, %eax

mov %eax, 0x123
mov 0x123, Y%eax

add %0x1, %eax
mov %eax, 0x123

How much is added? 3: correct!



Timeline View

Thread 1 Thread 2

mov 0x123, %eax
add %0x2, %eax
mov 0x123, %eax

add %0x1, %eax
mov %eax, 0x123

mov %eax, 0x123

How much is added? 2: incorrect!



Non-Determinism

Concurrency leads to non-deterministic results

* Not deterministic result: different results even with same inputs
* race conditions: results depend on execution timing

Whether bug manifests depends on CPU schedule!

Passing tests means little

How to program: imagine scheduler is malicious
Assume scheduler will pick bad ordering at some point...



What do we want?

Want 3 instructions to execute as an uninterruptable

group
That is, we want them to be atomic

mov 0x 123, %eax
add %0x|, %eax
mov %eax, 0x |23

More general:

critical section

Need mutual exclusion for critical sections
o if process A is in critical section C, process B can't
» (okay if other processes do unrelated work)



Synchronization

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of instructions across threads

Why is this an OS (rather than app) concern?
Motivation: Build them once and get them right

Monitors
Locks

Condition Variables

Loads Stores  Test&Set

Disable Interrupts

Semaphores




Locks

Goal: Provide mutual exclusion (mutex)
Three common operations:

* Allocate and Initialize
o Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

» Acquire
« Acquire exclusion access to lock;
« Wait if lock is not available (some other process in critical section)
« Spin or block (relinquish CPU) while waiting
* Pthread mutex lock(&mylock);

 Release

* Release exclusive access to lock; let another process enter critical section
* Pthread mutex unlock(&mylock);



