
Virtual Memory



Page Selection
Page Replacement

OPT
FIFO
LRU



Page Replacement Comparison

Add more physical memory, what happens to performance?
• LRU, OPT: Add more memory, guaranteed to have fewer (or 

same number of) page faults
• Smaller memory sizes are guaranteed to contain a subset 

of larger memory sizes
• Stack property: smaller cache a subset of bigger cache

• FIFO: Add more memory, usually have fewer page faults
• Belady’s anomaly: but there are cases where we have 

more page faults!



Fifo Performance may 
Decrease!

Consider access stream: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 

Consider physical memory size: 3 pages vs. 4 pages

How many misses with FIFO?

3 pages: 9 misses
4 pages: 10 misses



Problems with LRU-based Replacement
LRU does not consider frequency of accesses

• Is a page accessed once in the past equal to one 
accessed N times?

• Common workload problem:
• Scan (sequential read, never used again) one large data region 

flushes memory

Solution: Track frequency of accesses to page
Pure LFU (Least-frequently-used) replacement

• Problem: LFU can never forget pages from the far past



Implementing LRU
Perfect LRU on Software

• OS maintains ordered list of physical pages by reference time
• When page is referenced: Move page to front of list
• When need victim: Pick page at back of list
• Trade-off: Slow on memory reference, fast on replacement

Perfect LRU on Hardware
• Associate timestamp with each page (e.g., PTE)
• When page is referenced: Associate current system timestamp with page
• When need victim: Scan through PTEs to find oldest timestamp
• Trade-off: Fast on memory reference, slow on replacement (especially as 

size of memory grows)
In practice, do not implement Perfect LRU

• LRU is an approximation anyway, so approximate more
• Goal: Find an old page, but not necessarily the oldest



Clock Algorithm

Hardware
• Keep use (or reference) bit for each page frame
• When page is referenced: set use bit

Operating System
• Page replacement: Look for page with use bit cleared 

(has not been referenced for a while)
• Implementation:

• Keep pointer to last examined page frame (“clock hand”)
• Traverse pages in circular fashion (like a clock)
• Clear use bits as you search
• Stop when find page with already cleared use bit, replace this page
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evict page 1 because it has not been recently used



Clock Extensions
Use modified (“dirty”) bit to prefer to retain modified pages in 

memory
• Intuition: More expensive to replace dirty pages

• Modified pages must be written to disk, clean pages do not have to be
• First replace pages that have use bit and modified bit cleared

Replace multiple pages at once
• Intuition: Expensive to run replacement algorithm and to write single 

block to disk
• Find multiple victims each time and track free list

Add software counter (“chance”) to track use frequency
• Intuition: Want to differentiate pages by how much they are accessed
• Increment software counter if use bit is 0
• Replace when chance exceeds some specified limit



What if no hardware support?
What can the OS do if hardware does not have use bit 

(or dirty bit)?
• Can the OS “emulate” these bits?

Think about this question:
• Can the OS get control (i.e., generate a trap) every time use

bit should be set?  (i.e., when the page is accessed?)



Conclusion
Illusion of virtual memory: Processes can run when the sum of 
virtual address spaces is larger than physical memory
Mechanism:
• Extend page table entry with “present” bit
• OS handles page faults (or page misses) by reading in the desired page 

from disk
Policy:
• Page selection – demand paging, prefetching, hints
• Page replacement – OPT, FIFO, LRU, others

Implementations (clock) approximate LRU



Concurrency



• Questions answered:
• Why is concurrency useful?
• What is a thread and how does it differ from processes?
• What can go wrong if scheduling of critical sections is not atomic?

Concurrency



Motivation for concurrency: Blocking

• Operations proceeding at the same time: blocking for I/O, while doing other 
useful work

• Example: web server
• Serve the first request by reading a file from disk
• Serve a second request by running computation



http://cacm.acm.org/magazines/2012/4/147359-cpu-db-recording-microprocessor-history/fulltext

Motivation for Concurrency: Parallelism

http://cacm.acm.org/magazines/2012/4/147359-cpu-db-recording-microprocessor-history/fulltext


Motivation for Concurrency: Parallelism



Motivation
CPU Trend: Same speed, but multiple cores 
Goal: Write applications that fully utilize many cores
Option 1: Build apps from many communicating processes
• Example: Chrome (process per tab)
• Communicate via pipe() or similar

Pros?
• Don’t need new abstractions; good for security

Cons?
• Cumbersome programming
• High communication overheads
• Expensive context switching (why expensive?)



Concurrency: Option 2
New abstraction: thread

Threads are like processes, except:
multiple threads of same process share an address 
space

Divide large task across several cooperative threads
Communicate through shared address space



Common Programming Models
Multi-threaded programs tend to be structured as:

• Producer/consumer
Multiple producer threads create data (or work) that is 
handled by one of the multiple consumer threads 

• Pipeline
Task is divided into series of subtasks, each of which is 
handled in series by a different thread

• Defer work with background thread
One thread performs non-critical work in the background 
(when CPU idle)



CPU 1 CPU 2
running
thread 1

running
thread 2

RAM

What state do threads share?



CPU 1 CPU 2
running
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running
thread 2

RAM
PageDir A

PageDir B
…

What threads share page directories?
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IP IP

Do threads share Instruction Pointer?
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CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP …Virt Mem
(PageDir A)

IP IP

Share code, but each thread may be executing
different code at the same time 

à Different Instruction Pointers
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CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP …Virt Mem
(PageDir A)

IP IPSP SP

Do threads share stack pointer?



CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem
(PageDir A)

IP IPSP SP

STACK 1 STACK 2



CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem
(PageDir A)

IP IPSP SP

STACK 1 STACK 2

threads executing different 
functions need different stacks



THREAD VS. Process
Multiple threads within a single process share:

• Process ID (PID) 
• Address space

• Code (instructions) 
• Most data (heap) 

• Open file descriptors 
• Current working directory 
• User and group id 

Each thread has its own 
• Thread ID (TID) 
• Set of registers, including Program counter and Stack pointer 
• Stack for local variables and return addresses 

(in same address space)



THREAD API
Variety of thread systems exist 

• POSIX Pthreads
Common thread operations 

• Create 
• Exit 
• Join (instead of wait() for processes)



OS Support:  Approach 1
User-level threads: Many-to-one thread mapping

• Implemented by user-level runtime libraries 
• Create, schedule, synchronize threads at user-level 

• OS is not aware of user-level threads 
• OS thinks each process contains only a single thread of control 

Advantages 
• Does not require OS support; Portable 
• Can tune scheduling policy to meet application demands 
• Lower overhead thread operations since no system call

Disadvantages?
• Cannot leverage multiprocessors 
• Entire process blocks when one thread blocks



OS Support: Approach 2
Kernel-level threads: One-to-one thread mapping 

• OS provides each user-level thread with a kernel thread 
• Each kernel thread scheduled independently 
• Thread operations (creation, scheduling, synchronization) 

performed by OS 
Advantages 

• Each kernel-level thread can run in parallel on a multiprocessor 
• When one thread blocks, other threads from process can be 

scheduled 
Disadvantages 

• Higher overhead for thread operations 
• OS must scale well with increasing number of threads



Thread Schedule #1

• 0x195  mov 0x9cd4, %eax
• 0x19a  add $0x1, %eax
• 0x19d  mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

process
control
blocks:

T1

%eax: ?
%rip: 0x195

balance = balance + 1; balance at 0x9cd4 



Thread Schedule #1
Thread 1 Thread 2

State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

T1

%eax: ?
%rip: 0x195

%eax: ?
%rip: 0x195

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4

process
control
blocks:



Thread Schedule #1
Thread 1 Thread 2

State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

T1

%eax: ?
%rip: 0x195

%eax: ?
%rip: 0x195

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Thread Schedule #1
State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

T1

%eax: ?
%rip: 0x195

%eax: ?
%rip: 0x195

process
control
blocks:

Thread 1 Thread 2

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Thread Schedule #1
Thread 1 Thread 2

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process
control
blocks:

T1

%eax: ?
%rip: 0x195

%eax: ?
%rip: 0x195

Thread Context Switch

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Thread Schedule #1
Thread 1 Thread 2

State:
0x9cd4: 101
%eax: ?
%rip = 0x195

process
control
blocks:

T2

%eax: 101
%rip: 0x1a2

%eax: ?
%rip: 0x195

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Thread Schedule #1
Thread 1 Thread 2

State:
0x9cd4: 101
%eax: 101
%rip = 0x19a

T2

%eax: 101
%rip: 0x1a2

%eax: ?
%rip: 0x195

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Thread Schedule #1
Thread 1 Thread 2

State:
0x9cd4: 101
%eax: 102
%rip = 0x19d

%eax: 101
%rip: 0x1a2

%eax: ?
%rip: 0x195

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4T2



Thread Schedule #1
Thread 1 Thread 2

State:
0x9cd4: 102
%eax: 102
%rip = 0x1a2

T2

%eax: 101
%rip: 0x1a2

%eax: ?
%rip: 0x195

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Thread Schedule #1
Thread 1 Thread 2

State:
0x9cd4: 102
%eax: 102
%rip = 0x1a2

T2

%eax: 101
%rip: 0x1a2

%eax: ?
%rip: 0x195

Desired Result!

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Let’s consider another 
schedule…



Thread Schedule #2
Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

T1

%eax: ?
%rip: 0x195

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Thread Schedule #2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

T1

%eax: ?
%rip: 0x195

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4

Thread 1 Thread 2



Thread Schedule #2
%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

T1

%eax: ?
%rip: 0x195

Thread Context Switch

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4

Thread 1 Thread 2



Thread Schedule #2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

T2

%eax: ?
%rip: 0x195

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4

Thread 1 Thread 2



Thread Schedule #2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

T2

%eax: ?
%rip: 0x195

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4

Thread 1 Thread 2



Thread Schedule #2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

T2

%eax: ?
%rip: 0x195

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4

Thread 1 Thread 2



Thread Schedule #2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

T2

%eax: ?
%rip: 0x195

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4

Thread 1 Thread 2



Thread Schedule #2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

T2

%eax: ?
%rip: 0x195

Thread Context Switch

Thread 1 Thread 2

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Thread Schedule #2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 101
%eax: 101
%rip = 0x19d

T1

%eax: 101
%rip: 0x1a2

Thread Context Switch

Thread 1 Thread 2

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Thread Schedule #2

%eax: 101
%rip: 0x1a2

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

T1

%eax: 101
%rip: 0x1a2

Thread 1 Thread 2

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Thread Schedule #2

%eax: 101
%rip: 0x1a2

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

T1

%eax: 101
%rip: 0x1a2

WRONG Result! Final value of balance is 101

Thread 1 Thread 2

process
control
blocks:

• 0x195  mov 0x9cd4, %eax

• 0x19a  add $0x1, %eax

• 0x19d  mov %eax, 0x9cd4



Timeline View
Thread 1 Thread 2
mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

mov 0x123, %eax

add %0x2, %eax

mov %eax, 0x123

How much is added to shared variable? 3: correct!



Timeline View
Thread 1 Thread 2
mov 0x123, %eax
add %0x1, %eax

mov 0x123, %eax
mov %eax, 0x123

add %0x2, %eax
mov %eax, 0x123

How much is added? 2: incorrect!



Timeline View
Thread 1 Thread 2

mov 0x123, %eax
mov 0x123, %eax

add %0x2, %eax
add %0x1, %eax

mov %eax, 0x123
mov %eax, 0x123

How much is added? 1: incorrect!



Timeline View
Thread 1 Thread 2

mov 0x123, %eax
add %0x2, %eax
mov %eax, 0x123

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

How much is added? 3: correct!



Timeline View
Thread 1 Thread 2

mov 0x123, %eax
add %0x2, %eax

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

mov %eax, 0x123

How much is added? 2: incorrect!



Non-Determinism
Concurrency leads to non-deterministic results

• Not deterministic result: different results even with same inputs
• race conditions: results depend on execution timing

Whether bug manifests depends on CPU schedule!

Passing tests means little

How to program: imagine scheduler is malicious
Assume scheduler will pick bad ordering at some point…



What do we want?
Want 3 instructions to execute as an uninterruptable 
group 
That is, we want them to be atomic

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

critical section

More general:

Need mutual exclusion for critical sections
• if process A is in critical section C, process B can’t
•  (okay if other processes do unrelated work)



Synchronization
Build higher-level synchronization primitives in OS

• Operations that ensure correct ordering of instructions across threads
Why is this an OS (rather than app) concern?
Motivation: Build them once and get them right

Monitors Semaphores
Condition Variables

Locks

Loads Stores Test&Set
Disable Interrupts



Locks
Goal: Provide mutual exclusion (mutex)
Three common operations:
• Allocate and Initialize

• Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

• Acquire
• Acquire exclusion access to lock; 
• Wait if lock is not available  (some other process in critical section)
• Spin or block (relinquish CPU) while waiting
• Pthread_mutex_lock(&mylock);

• Release
• Release exclusive access to lock; let another process enter critical section
• Pthread_mutex_unlock(&mylock);


