Virtual Memory

NNNNNNNNNNNNNNNNNNNNNNN

Virtual Memory Page SeIeC“On

 Fame— e N Page Replacement
LibC | ;

H 1 ,2,3,1 ,2,4,1 ,4,2,3,2

?;iiss 1 Miss: 1,2,3 .-.

1123

Phys Memory it n

Hit: 2 {2 |3 |

. . Miss:4, Replace:3 2 |4

AMAT = (Tm) + (Miss% * Td) Hi:1 =

OPT Hit: 4 1|2 |4

Hit; 2 (2 |4 |

FLIRFS Miss:3, Replace:1 E

Hit2 FRERER

Page Replacement Comparison

Add more physical memory, what happens to performance?

- LRU, OPT: Add more memory, guaranteed to have fewer (or
same number of) page faults

- Smaller memory sizes are guaranteed to contain a subset
of larger memory sizes

- Stack property: smaller cache a subset of bigger cache

- FIFO: Add more memory, usually have fewer page faults

- Belady’s anomaly: but there are cases where we have
more page faults!

Consider access stream: 1, 2, 3,4,1,2,5,1,2,3,4,5
Consider physical memory size: 3 pages vs. 4 pages

How many misses with FIFO?

3 pages: 9 misses
4 pages: 10 misses

Problems with LRU-based Replacement

LRU does not consider frequency of accesses

- |s a page accessed once in the past equal to one
accessed N times?

- Common workload problem:

- Scan (sequential read, never used again) one large data region
flushes memory

Solution: Track frequency of accesses to page

Pure LFU (Least-frequently-used) replacement
- Problem: LFU can never forget pages from the far past

Implementing LRU

Perfect LRU on Software
- OS maintains ordered list of physical pages by reference time
- When page is referenced: Move page to front of list
- When need victim: Pick page at back of list
- Trade-off: Slow on memory reference, fast on replacement

Perfect LRU on Hardware
- Associate timestamp with each page (e.g., PTE)
- When page is referenced: Associate current system timestamp with page
- When need victim: Scan through PTEs to find oldest timestamp
- Trade-off: Fast on memory reference, slow on replacement (especially as
size of memory grows)
In practice, do not implement Perfect LRU
- LRU is an approximation anyway, so approximate more
- Goal: Find an old page, but not necessarily the oldest

Clock Algorithm

Hardware
- Keep use (or reference) bit for each page frame
- When page is referenced: set use bit

Operating System
- Page replacement: Look for page with use bit cleared
(has not been referenced for a while)

- Implementation:
- Keep pointer to last examined page frame (“clock hand”)
- Traverse pages in circular fashion (like a clock)
- Clear use bits as you search
- Stop when find page with already cleared use bit, replace this page

Clock:
Look For a Page

use= use= use= use-=

1 1 0 1
—]
t

clock hand

Clock:
Look For a Page

use= use= use= use-=

0 1 0 1
—]
t

clock hand

Clock:
Look For a Page

use= use= use= use-=

0 0 0 1
—]
t

clock hand

Clock:
Look For a Page

use= use= use= use-=

0 0 0 1
— 1]
t

clock hand

evict because it has not been recently used

Clock:
Look For a Page

use= use= use= use-=

0 0 0 1
—]
t

clock hand

IS accessed...

Clock:
Look For a Page

use= use= use= use-=

1 0 0 1
—]
t

clock hand

Clock:
Look For a Page

use= use= use= use-=

1 0 0 1
—]
t

clock hand

Clock:
Look For a Page

use= use= use= use-=

1 0 0 1
—]
t

clock hand

Clock:
Look For a Page

use= use= use= use-=

1 0 0 0
—]
t

clock hand

Clock:
Look For a Page

use= use= use= use-=

0 0 0 0
—]
t

clock hand

Clock:
Look For a Page

use= use= use= use-=

0 0 0 0
— 1]
t

clock hand

evict because it has not been recently used

Clock Extensions

Use modified (“dirty”) bit to prefer to retain modified pages in
memory

- Intuition: More expensive to replace dirty pages
- Modified pages must be written to disk, clean pages do not have to be

- First replace pages that have use bit and modified bit cleared
Replace multiple pages at once

- Intuition: Expensive to run replacement algorithm and to write single
block to disk

- Find multiple victims each time and track free list

Add software counter (“chance”) to track use frequency
- Intuition: Want to differentiate pages by how much they are accessed
- Increment software counter if use bitis O
- Replace when chance exceeds some specified limit

What if no hardware support?

What can the OS do if hardware does not have use bit
(or dirty bit)?
. Can the OS “emulate” these bits?

Think about this question:

. Can the OS get control (i.e., generate a trap) every time use
bit should be set? (i.e., when the page is accessed?)

Conclusion

lllusion of virtual memory: Processes can run when the sum of
virtual address spaces is larger than physical memory

Mechanism:
Extend page table entry with “present” bit

OS handles page faults (or page misses) by reading in the desired page
from disk

Policy:
Page selection — demand paging, prefetching, hints
Page replacement — OPT, FIFO, LRU, others

Implementations (clock) approximate LRU

Concurrency

NNNNNNNNNNNNNNNNNNNNNNN

Concurrency

Questions answered:

Why is concurrency useful?

What is a thread and how does it differ from processes?

What can go wrong if scheduling of critical sections is not atomic?

Motivation for concurrency: Blocking

« Operations proceeding at the same time: blocking for 1/0, while doing other
useful work

« Example: web server
« Serve the first request by reading a file from disk
« Serve a second request by running computation

Motivation for Concurrency: Parallelism

= Intel aIBM <« Sun

0600 = o FTecuaOY VE. ERTIS el wpe ol o fEE i
D e A 4 e At Ay m S S -
1000 |--coveen e lepvans s - J :
N : :
s HE e e &
100 [sovmen: — o BBE o s e o v
. T # : : :
99 o s B F SN R e G e AT IR A
10
1985 1990 1995 2000 2005 2010

http://cacm.acm.org/magazines/2012/4/147359-cpu-db-recording-microprocessor-history/fulltext

http://cacm.acm.org/magazines/2012/4/147359-cpu-db-recording-microprocessor-history/fulltext

Motivation for Concurrency: Parallelism

10 ‘r ,/’ Transistors

. ! (thousands)
10}

5 |
10" |

! Single-thread

4 | Performance
10 : (SpeciINT)

3 I
10 |

2 : - Typical Power
10 : (Watts)

1 : 77 Number of
10 : Cores

0 |
10 |

1975 1980 1985 1990 1995 2000 2005 2010 2015
Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Motivation

CPU Trend: Same speed, but multiple cores
Goal: Write applications that fully utilize many cores

Option 1: Build apps from many communicating processes
« Example: Chrome (process per tab)
« Communicate via pipe() or similar

Pros?
« Don’t need new abstractions; good for security

Cons?
« Cumbersome programming
« High communication overheads
« Expensive context switching (why expensive?)

Concurrency: Option 2

New abstraction: thread

Threads are like processes, except:
multiple threads of same process share an address
space

Divide large task across several cooperative threads
Communicate through shared address space

Common Programming Models

Multi-threaded programs tend to be structured as:

* Producer/consumer
Multiple producer threads create data (or work) that is
handled by one of the multiple consumer threads

* Pipeline
Task is divided into series of subtasks, each of which is
handled in series by a different thread

* Defer work with background thread

One thread performs non-critical work in the background
(when CPU idle)

CPU 1 CPU 2 RAM

running running
thread 1 thread 2

S I S E—

What state do threads share?

CPU 1 CPU 2 RAM

running running PageDir A

thread 1 thread 2 PageDir B

S I S E—

What threads share page directories?

running running
thread 1 thread 2

PageDir A

PageDir B

running running

thread 1 ta 2 :

%

running running
thread 1 thread 2
e
[i—

S I S E—

Do threads share Instruction Pointer?

Virt Mem
(PageDir A)

running running
thread 1 thread 2

PageDir A

PageDir B

Cove [reap]

running running
thread 1 thread 2

PageDir A

PageDir B

Virt Mem
pagenir o) R i
Share code, but each thread may be executing
different code at the same time

- Different Instruction Pointers

Virt Mem
(PageDir A)

running running
thread 1 thread 2

PageDir A

PageDir B

Cove [reap]

running running
thread 1 thread 2

PageDir A

PageDir B

ageDir) I
(PageDir A) CODE | HEAP

Do threads share stack pointer?

running running PageDir A

thread 1 thread 2 B
ageDir B
PTBR PTBR '
IP SP 1P aeSP |
B A .

N

Virt Mem
(PageDir A)

coe[HEAP] fsTAckt] [sTAckz]

running running
thread 1 thread 2
e
I WP |

Virt Mem
(PageDir A)

threads executing different
functions need different stacks

THREAD VS. Process

Multiple threads within a single process share:
* Process ID (PID)

« Address space
« Code (instructions)
* Most data (heap)

 Open file descriptors
 Current working directory
» User and group id

Each thread has its own
* Thread ID (TID)
» Set of registers, including Program counter and Stack pointer

o Stack for local variables and return addresses
(in same address space)

THREAD API

Variety of thread systems exist
« POSIX Pthreads

Common thread operations
» Create
« Exit
« Join (instead of wait() for processes)

OS Support: Approach 1

User-level threads: Many-to-one thread mapping

* Implemented by user-level runtime libraries
« Create, schedule, synchronize threads at user-level

« OS is not aware of user-level threads
« OS thinks each process contains only a single thread of control

Advantages
* Does not require OS support; Portable

« Can tune scheduling policy to meet application demands
* Lower overhead thread operations since no system call

Disadvantages?
« Cannot leverage multiprocessors
 Entire process blocks when one thread blocks

OS Support: Approach 2

Kernel-level threads: One-to-one thread mapping
« OS provides each user-level thread with a kernel thread
« Each kernel thread scheduled independently
« Thread operations (creation, scheduling, synchronization)
performed by OS
Advantages
« Each kernel-level thread can run in parallel on a multiprocessor
« When one thread blocks, other threads from process can be
scheduled
Disadvantages
» Higher overhead for thread operations
* OS must scale well with increasing number of threads

Thread Schedule #1

balance = balance + 1: balance at 0x9cd4

Thread 1 Thread 2
State: rocess
Ox9cd4: 100 P %eax: ? %eax: ?
. 2 control Josrip: ox195 %rip: Ox195
%rip = 0x195 blocks:
T1 * @x195 mov 0x9cd4,

« Ox19a add $0x1,
* 0x19d mov , 0x9cd4

Thread Schedule #1

State:
0x9cd4: 100 Process
100 control
%rip = 0x19a blocks:
e 0x195
T1 * . 0x19a
e Ox19d

%eax: ?
%rip: 0x195

mov 0x9cd4,
add $0x1,

mov ,

%eax: ?
%rip: 0x195

Ox9cd4

Thread Schedule #1

State:

Ox9cd4: 100 process
: 101 control

%rip = 0x19d blocks:

¢ 0x195

e Ox19a
& ' e Ox19d

%eax: ?
%rip: 0x195

mov 0x9cd4,
add $0x1,

mov ,

%eax: ?
%rip: 0x195

Ox9cd4

Thread Schedule #1

State:
Ox9cd4: 101 process
: 101 control
%rip = 0xla2 blocks:
« 0x195
e Ox19a

. 1
1 ’ 0x19d

%eax: ?
%rip: 0x195

mov 0x9cd4,
add $0x1,

mov ,

%eax: ?
%rip: 0x195

Ox9cd4

Thread Schedule #1

State:

rocess
Ox9cd4: 101 P %eax: ? %eax: ?

- 101 control Mosrip: 0x195 %rip: 0x195
%rip = 0xla2 blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,
T1 ¢ 0x19d mov , 0x9cd4

Thread Context Switch

Thread Schedule #1

State:

Ox9cd4: 101 Process %eax: 101 %eax: ?
. 2 control |orip: ox1a2 %rip: 0x195
%rip = @0x195 blocks:
e 0x195 mov 0x9cd4,
T2

e Ox19a add $0x1,
e Ox19d mov , 0x9cd4

Thread Schedule #1

State: rocess
Ox9cd4: 101 P %eax: 101 %eax: ?

- 101 control |%rip: ox1a2 %rip: 0x195
%rip = 0x19a blocks:

e 0x195 mov 0x9cd4,

T2 * « 0x19a add $0x1,
. 0x19d mov , 0x9cd4

Thread Schedule #1

State:
Ox9cd4: 101 ProcCess Joeax: 101

%eax: ?
: 102 control |%rip: Ox1a2 %rip: 0x195
%rip = 0x19d blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,

T2 * ¢ 0x19d mov , 0x9cd4

Thread Schedule #1

State:
0x9cd4: 102 ProCess loeax: 101

%eax: ?
: 102 control |%rip: 0x1a2 %rip: 0x195
%rip = 0xla2 blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,
e Ox19d mov , 0x9cd4

S

Thread Schedule #1

State: process
Ox9cd4: %eax: 101 %eax: ?
control
102 blocks: %rip: Ox1a2 %rip: 0x195
%rip = 0xla2 '

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,

T « 0x19d mov "

Ox9cd4

Desired Result!

Let’s consider another
schedule...

Thread Schedule #2

State:
Ox9cd4: 100 process [%eax:? %eax: ?
o/oeax . ? Control %rip: 0x195 %rip: 0x195
%Srip = 0x195 blocks:

T1 e 0x195 mov 0x9cd4,

e Ox19a add $0x1,
e Ox19d mov , 0x9cd4

Thread Schedule #2

State:
%eax: ?

0x9cd4: 100 process &, . .-

o . o€aX:

seax: 100 control Rorip: 0x195 %rip: 0x195
%rip = 0x19a blocks:

e 0x195 mov 0x9cd4,
T1 « 0x19a add $0x1,
e Ox19d mov , 0x9cd4

Thread Schedule #2

State: . -
0x9cd4: 100 process [7°eax:? oeax: ?

0 %rip: 0x195 %rip: 0x195
seax: 101 control

%rip = 0x19d blocks:

« O0x195 mov 0x9cd4,
« 0x19a add $0x1,
T e 0x19d mov , 0x9cd4

Thread Context Switch

Thread Schedule #2

State:
Ox9cd4: 100 process |%eax: 101 %eax: ?
%eaXx:' ? contro| [|%rip: 0x19d %rip: 0x195
%Srip = 0x195 blocks:

T2 e 0x195 mov 0x9cd4,

e Ox19a add $0x1,
e Ox19d mov , 0x9cd4

Thread Schedule #2

State:
Ox9cd4: 100 ProcCess |oeax: 101

%eax: ?
%eax: 100 control |%rip: 0x19d %rip: 0x195
%rip = 0x19a blocks:

e Ox195 mov 0x9cd4,
T2 e Ox19a add $0x1,
e Ox19d mov , 0x9cd4

Thread Schedule #2

State:
Ox9cd4: 100 Process |%eax: 101

%eax: ?
%eax: 101 control %rip: 0x19d %rip: 0x195
%srip = 0x19d blocks:

e Ox195 mov 0x9cd4,
e Ox19a add $0x1,
T2 e 0x19d mov , 0x9cd4

Thread Schedule #2

State:
Ox9cd4: 101 process |%eax: 101

%eax: ?
%rip = 0xla2 blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,
e Ox19d mov , 0x9cd4

T2

Thread Schedule #2

State:

0x9cd4: 101 Process 1o .« 101
%eax: 101 control |%rip: 0x19d
%rip = 0xla2 blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,

e Ox19d mov , 0x9cd4
T2

Thread Context Switch

Thread Schedule #2

State:
%eax: 101

0x9cd4: 101 Process Noeax: 101
oeax: 101 control J%rip: 0x19d %rip: Ox1a2
%rip = 0x19d blocks:

e Ox195 mov 0x9cd4,
e Ox19a add $0x1,
T1 e 0x19d mov , 0x9cd4

Thread Schedule #2

State:
%eax: 101

0x9cd4: 101 ProCess Roeax: 101
%eax: 101 control J%rip: Ox1a2 %rip: Ox1a2
%rip = 0xla2 blocks:

e Ox195 mov 0x9cd4,
e Ox19a add $0x1,

e Ox19d mov , 0x9cd4
T1

Thread Schedule #2

State:
0x9cd4: 101 Process HNoeax: 101 %eax: 101
%eax: 101 control J%rip: Ox1a2 %rip: Ox1a2
%rip = 0xla2 blocks:

e 0x195 mov 0x9cd4,
e Ox19a add $0x1,
e Ox19d mov , 0x9cd4

T1

WRONG Result! Final value of balance is 101

Timeline View

Thread 1

mov 0x123, %eax
add %0x1, %eax
movVv %eax, 0x123

Thread 2

mov 0x123, Y%eax
add %0x2, %eax

movV %eax, 0x123

How much is added to shared variable?

3: correct!

Timeline View

Thread 1
mov 0x123, Y%eax
add %0x1, %eax

movV %eax, 0x123

How much is added?

Thread 2

mov 0x123, Y%eax

add %0x2, %eax
mov %eax, 0x123

2: incorrect!

Timeline View
Thread 1

mov 0x123, Y%eax
add %0x1, %eax

mov %eax, 0x123

How much is added?

Thread 2
mov 0x123, Y%eax

add %0x2, %eax

mov %eax, 0x123

1: incorrect!

Timeline View

Thread 1 Thread 2
mov 0x123, Y%eax
add %0x2, %eax

mov %eax, 0x123
mov 0x123, Y%eax

add %0x1, %eax
mov %eax, 0x123

How much is added? 3: correct!

Timeline View

Thread 1 Thread 2

mov 0x123, %eax
add %0x2, %eax
mov 0x123, %eax

add %0x1, %eax
mov %eax, 0x123

mov %eax, 0x123

How much is added? 2: incorrect!

Non-Determinism

Concurrency leads to non-deterministic results

* Not deterministic result: different results even with same inputs
* race conditions: results depend on execution timing

Whether bug manifests depends on CPU schedule!

Passing tests means little

How to program: imagine scheduler is malicious
Assume scheduler will pick bad ordering at some point...

What do we want?

Want 3 instructions to execute as an uninterruptable

group
That is, we want them to be atomic

mov 0x 123, %eax
add %0x|, %eax
mov %eax, 0x |23

More general:

critical section

Need mutual exclusion for critical sections
o if process A is in critical section C, process B can't
» (okay if other processes do unrelated work)

Synchronization

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of instructions across threads

Why is this an OS (rather than app) concern?
Motivation: Build them once and get them right

Monitors
Locks

Condition Variables

Loads Stores Test&Set

Disable Interrupts

Semaphores

Locks

Goal: Provide mutual exclusion (mutex)
Three common operations:

* Allocate and Initialize
o Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

» Acquire
« Acquire exclusion access to lock;
« Wait if lock is not available (some other process in critical section)
« Spin or block (relinquish CPU) while waiting
* Pthread mutex lock(&mylock);

 Release

* Release exclusive access to lock; let another process enter critical section
* Pthread mutex unlock(&mylock);

