
Memory
Virtualization

Use of a page table doubles memory references

Sparse PTEs
Valid PTEs are continuous

Address format for Multilevel Paging

How should logical address be structured?
• How many bits for each paging level?

Goal?
• Each page table fits within a page
• PTE size * number PTE = page size

• Assume PTE size = 4 bytes
• Page size = 2^12 bytes = 4KB
• number PTE per page = (2^12 bytes per page) / (4 bytes per PTE)
• à number PTE = 2^10

• à # bits for selecting inner page = 10
Remaining bits for outer page:

• 30 – 10 – 12 = 8 bits

outer page inner page page offset (12 bits)

30-bit address:

Problem with 2 levels?
Problem: page directory (outer level) may not fit in a page!

Solution:
• Split page directories into pieces
• Use another page dir to refer to the pieces of the page directory

PT idx OFFSETPD idx 1

VPN

PD idx 0

How large is virtual address space with 4 KB pages, 4 byte PTEs,
each page table fits in page, given 1, 2, 3 levels?

4KB / 4 bytes à 1K entries per level
1 level: 1K * 4K = 2^22 = 4 MB
2 levels: 1K * 1K * 4K = 2^32 ≈ 4 GB
3 levels: 1K * 1K * 1K * 4K = 2^42 ≈ 4 TB

outer page? (N bits)
inner page

(10 bits) page offset (12 bits)

64-bit address:

Review: Paging pros and cons
Advantages

• No external fragmentation
• don’t need to find contiguous RAM

• All free pages are equivalent
• Easy to manage, allocate, and free pages

Disadvantages
• Page tables can get big

• Must have one entry for every page of address space
• Accessing page tables is too slow [address this shortly]

• Doubles the number of memory references per instruction

Translation Steps
H/W: for each mem reference:

 1. extract VPN (virt page num) from VA (virt addr)
 2. calculate addr of PTE (page table entry)
 3. read PTE from memory
 4. extract PFN (page frame num)
 5. build PA (phys addr)
 6. read contents of PA from memory into register

(cheap)

(cheap)

(cheap)

(cheap)

(expensive)

(expensive)

Which expensive step(s) can we (not) avoid?
Which steps are expensive?

3) Let’s try to avoid having to read PTE from memory!

Translation Lookaside Buffers
How can page translations be made faster?
What is the basic idea of a TLB (Translation Lookaside Buffer)?
What types of workloads perform well with TLBs?
How do TLBs interact with context-switches?

Example: Array Iterator

int sum = 0;

for (i=0; i<N; i++){
 sum += a[i];

}

Assume ‘a’ starts at 0x3000
Ignore instruction fetches

load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

What virtual addresses?

load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

What physical addresses?

Observation:
Repeatedly access same PTE because program repeatedly accesses same virtual page

Strategy: Cache Page Translations

TLB: Translation Lookaside Buffer

CPU MMU RAM

memory interconnect

PT

Translation Cache
Some popular entries

We couldn’t
store entire

page table in
MMU, but we
can store a
fast cache

TLB Control Flow

// assume simple linear page table

TLB Control Flow

// assume simple linear page table

TLB Control Flow

// assume simple linear page table

TLB Control Flow

// assume simple linear page table

TLB Control Flow

// assume simple linear page table

TLB Control Flow

// assume simple linear page table

Tag (virtual page number) Physical page number (page table entry)

TLB Entry

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A

Direct mapped (num sets = 16)

Lookup
• Calculate set (tag % num_sets)
• Search for tag within resulting set

Where is VPN (tag) 18 located?
 2

TLB Organization

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A

Direct mapped

TLB Organization

Two-way set associative
Set

In
de

x

0
1
2
3

A B C D

Four-way set associative

A B C D E L M N O P

More in Computer
Architecture Class

Tag (virtual page number) Physical page number (page table entry)

TLB Entry

Fully associative

TLB Associativity Trade-offs
Higher associativity

+ Better utilization, fewer collisions
– Slower
– More hardware

Lower associativity
+ Fast
+ Simple, less hardware
– Greater chance of collisions

TLBs are usually fully associative

Array Iterator (with TLB)
int sum = 0;
for (i = 0; i < 2048; i++){
 sum += a[i];

}

Assume following virtual address stream:
load 0x1000

load 0x1004

load 0x1008

load 0x100C
…

What will TLB behavior look like?

PhysicalVirtual

P1

P2

P2

P1

Page Table

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB

P1 pagetable
1 5 4 …

P2
28 KB

TLB Accesses: Sequential Example

load 0x1000

load 0x1004

load 0x1008
load 0x100c

…
load 0x2000
load 0x2004

load 0x0004
load 0x5000
(TLB hit)
load 0x5004
(TLB hit)
load 0x5008
(TLB hit)
load 0x500C
…
load 0x0008
load 0x4000
(TLB hit)
load 0x4004

0 1 2 3

CPU’s TLB

PTBR

Valid VPN PPN

1
1

1
2

5
4

Performance Of TLB?
int sum = 0;
for (i=0; i<2048; i++) {
 sum += a[i];
}

Calculate miss rate of TLB for data:
TLB misses / # TLB lookups

TLB lookups?
 = number of accesses to a = 2048

TLB misses?
 = number of unique pages accessed
 = 2048 / (elements of ‘a’ per 4K page)
 = 2K / (4K / sizeof(int)) = 2K / 1K = 2

Miss rate?
 2/2048 = 0.1%

Hit rate? (1 – miss rate)
 99.9%

Would hit rate get better or worse with
smaller pages?
 Worse

TLB Performance
How can system improve TLB performance (hit rate)

given fixed number of TLB entries?

Increase page size
Fewer unique page translations needed to access same

amount of memory

TLB “reach” in terms of physical memory size:
Number of TLB entries * Page Size

“Huge pages” used in many real systems.

TLB Performance with Workloads

Sequential array accesses almost always hit in TLB
• Very fast!

What access pattern will be slow?
• Highly random, with no repeat accesses

Workload Access Patterns
int sum = 0;

for (i=0; i<2048; i++) {
 sum += a[i];

}

int sum = 0;
srand(1234);
for (i=0; i<1000; i++) {
 sum += a[rand() % N];
}
srand(1234);
for (i=0; i<1000; i++) {
 sum += a[rand() % N];
}

Workload A Workload B

Workload
Access Patterns

int sum = 0;

for (i=0; i<2048; i++) {
 sum += a[i];

}

Workload A

time

ad
dr

es
s

Sequential Accesses

…

Spatial Locality

time
ad

dr
es

s

Repeated Accesses (even if random locations)

…

Workload
Access Patterns

Temporal Locality

int sum = 0;
srand(1234);
for (i=0; i<1000; i++) {
 sum += a[rand() % N];
}
srand(1234);
for (i=0; i<1000; i++) {
 sum += a[rand() % N];
}

Workload B

Workload Locality
Spatial Locality: future access will be to nearby addresses
Temporal Locality: future access will be repeats to the same data
What TLB characteristics are best for each type?
Spatial:

• Access same page repeatedly; need same VPN à PFN translation
• Same TLB entry re-used

Temporal:
• Access same address near in future
• Same TLB entry re-used in near future
• How near in future? How many TLB entries are there?

Differentiating processes
• So far, we assumed VPNs are unique. They are not (across

multiple processes)!
• Option 1: Flush TLBs upon every context switch (valid = 0)

• Problem: poor performance after each context switch
• Option 2: Attach “address space identifier” to TLB entry

A full system with TLBs
On TLB miss: lookups with more paging levels more expensive
How much does a miss cost?
Assume 3-level page table, 256-byte pages, 16-bit addresses
Assume ASID of current process is 211
How many physical accesses for each instruction?
(a) 0xAA10: movl 0x1111, %edi

(b) 0xBB13: addl $0x3, %edi

(c) 0x0519: movl %edi, 0xFF10

ASID VPN PFN Valid

211 0xbb 0x91 1

211 0xff 0x23 1

122 0x05 0x91 1

211 0x05 0x12 0

0xaa: (TLB miss -> 3 for addr trans) + 1 instr fetch
0x11: (TLB miss -> 3 for addr trans) + 1 movl

Total: 8

Total: 10xbb: (TLB hit -> 0 for addr trans) + 1 instr fetch from 0x9113

0x05: (TLB miss -> 3 for addr trans) + 1 instr fetch
0xff: (TLB hit -> 0 for addr trans) + 1 movl into 0x2310

Total: 5

Summary: Better page tables
Problem:
Simple linear page tables require too much contiguous memory
Many options for efficiently organizing page tables
If OS traps on TLB miss, OS can use any data structure

• e.g., inverted page tables
If Hardware handles TLB miss, page tables must follow specific
data structure that hardware knows how to “walk”

• Multi-level page tables used in x86 architecture
• Each page table must fit within a page

Next Topic: What if desired address spaces do not fit in physical
memory?

Virtual Memory
Questions answered:

How to run process when not enough physical memory?
When should a page be moved from disk to memory?
What page in memory should be replaced?
How can the LRU page be approximated efficiently?

RUTGERS UNIVERSITY
Computer Sciences Department

CS 416 + 518 Operating Systems Design
Sudarsun Kannan

Motivation
OS goal: Support processes when not enough physical memory

• Single process with very large address space
• Multiple processes with combined address spaces

User code should be independent of amount of physical memory
• Correctness, if not performance

Virtual memory: OS provides illusion of more physical memory
How could we make such an illusion work?

• We rely on key properties of user processes (workload) and machine
architecture (hardware)

code
data
Program

Virtual Memory

code
data
Program

Virtual Memory

code
data
heap

stack
Process 1

create

code
data
Program

code
data
heap

stack
Process 1

create

what’s in code?

Virtual Memory

data
Program

LibA LibB
ProgLibC

create

data
heap

stack
Process 1

LibA LibB
ProgLibC

many large libraries, some
of which are rarely/never used

Virtual Memory

How to avoid wasting physical pages to back
rarely used virtual pages?

data
Program

LibA LibB
ProgLibC

data
heap

stack
Process 1

LibA LibB
ProgLibC

Virtual Memory

Phys Memory

ProgLibC

Disk

data
Program

LibA LibB
ProgLibC data

heap

stack
Process 1

LibA LibB
ProgLibC

Virtual Memory

Phys Memory

ProgLibC

Disk

data
Program

LibA LibB
ProgLibC data

heap

stack
Process 1

LibA LibB
ProgLibC

Virtual Memory

Phys Memory

ProgLibC

access LibB
Disk

data
Program

LibA
ProgLibC data

heap

stack
Process 1

LibA LibB
ProgLibC

Virtual Memory

Phys Memory

ProgLibC

copy (or move)
to main memory

LibB

LibBDisk

data
Program

LibA
ProgLibC data

heap

stack
Process 1

LibA LibB
ProgLibC

Virtual Memory

Phys Memory

ProgLibC

Called “paging” in

LibB

LibBDisk

Locality of Reference
Effectively: Using main memory as a cache of process virtual

memory contents located on disk
Leverage locality of reference within processes

• Spatial: reference memory addresses near previously referenced
addresses

• Temporal: reference memory addresses that have referenced in the past
• Processes spend majority of time in small portion of code

• For example: 90% of time in 10% of code

Implication:
• Process only uses small amount of address space at any moment
• Only small amount of address space must be resident in physical memory

Memory Hierarchy
Leverage memory hierarchy of machine architecture
Each layer acts as “backing store” for layer above

disk storage

main memory

caches

registers

size
speed cost

Virtual Memory Intuition

Idea: OS keeps unreferenced pages on disk
• Slower, cheaper backing store than memory

Process can run when not all pages are loaded into main memory
OS and hardware cooperate to provide illusion of large disk as fast as

main memory
• Same behavior as if all of address space in main memory
• Hopefully have similar performance

Requirements:
• OS must have mechanism to identify location of each page in address space either

in memory or on disk
• OS must have policy for determining which pages live in memory and which on disk

Virtual Address Space Mechanisms

Each page in virtual address space maps to one of three locations:
• Physical main memory: Small, fast, expensive
• Disk (backing store): Large, slow, cheap
• Nothing (error): Free

Extend page tables with an extra bit: present
• permissions (r/w), valid, present
• Page in memory: present bit set in PTE
• Page on disk: present bit cleared

• PTE with cleared present bit points to block on disk
• Causes trap into OS when page is referenced
• Trap: page fault

Present Bit

PFN valid prot present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys Memory

Disk

16 1 rw- 1

What if access vpn 0xb?

// VPN 0xb

Virtual Memory Mechanisms

Hardware and OS cooperate to translate addresses
First, hardware checks TLB for virtual address

• if TLB hit, address translation is done; page in physical
memory

If TLB miss...
• Hardware or OS walk page tables
• If PTE designates page is present, then page in physical

memory

Hardware memory access: Control flow

Hardware memory access: Control flow

Hardware memory access: Control flow

Virtual Memory Mechanisms

If page fault (i.e., present bit is cleared)
• Trap into OS (not handled by hardware. Why?)
• OS selects victim page in memory to replace

• Write victim page out to disk if modified. Add modified
(“dirty”) bit to PTE
• OS reads referenced page from disk into memory
• Page table is updated, present bit is set
• Process continues execution

What should scheduler do?

