
Paging

Review
Virtual addresses

Physical addresses

Base + Bounds

External Fragmentation

Paging VPN to PFN Translation

Virtual => Physical PAGE Mapping

How should OS translate VPN to PPN?
For segmentation, OS used a formula (e.g., phys addr = virt_offset + base_reg)
For paging, OS needs more general mapping mechanism
What data structure is good?

0 1 0 1 0 1

VPN offset

1 1 0 1 0 11 0

PPN offset

Address Mapper

Big array: page table

Number of bits in
virtual address
format does not
need to equal
number of bits in
physical address
format

The Mapping

Virt Mem

Phys Mem

P2 P3P1

Virt Mem

Phys Mem

0 1 2 3 0 1 2 3 0 1 2 3
P2 P3

0 1 2 3 4 5 6 7 8 9 10 11

P1

Page Tables:

P1
3
1
7
10

P2
0
4
2
6

P3
8

5
9

11

Let’s fill in the Page Table

Virt Mem

Phys Mem

0 4 8

Where are page tables stored?

How big is a typical page table?
 - assume 32-bit address space
 - assume 4 KB pages
 - assume 4 byte entries

• Page table size = Num entries * size of each entry
• Num entries = num virtual pages = 2^(bits for vpn)
• Bits for vpn = 32– number of bits for page offset

= 32 – lg(4KB) = 32 – 12 = 20
• Num entries = 2^20 = 1 MB
• Page table size = Num entries * 4 bytes = 4 MB per process

Ideally, put it in fast hardware (MMU)…

Where are page tables stored?
Implication: Store each page table in memory
• Hardware finds page table base with register (e.g., CR3 on x86)

What happens on a context-switch?
• Change contents of page table base register to newly scheduled

process
• Save old page table base register in PCB of descheduled process

Other PT info
What other info is in pagetable entries besides translation?
• valid bit
• protection bits
• present bit (needed later)
• reference bit (needed later)
• dirty bit (needed later)

Page table entries are just bits stored in memory
• Agreement between hardware and OS about interpretation

Memory Accesses with Pages
0x0010: movl 0x1100, %edi
0x0013: addl $0x3, %edi
0x0019: movl %edi, 0x1100

Assume PT is at phys addr 0x5000
Assume PTE’s are 4 bytes
Assume 4KB pages
How many bits for offset?

Simplified view
of page table

2
0

80
99

Use of a page table doubles memory references

Physical Memory Accesses with Paging?
 1) Fetch instruction at logical addr 0x0010; vpn?

• Access page table to get ppn for vpn 0

• Mem ref 1: 0x5000

• Learn vpn 0 is at ppn 2

• Fetch instruction at 0x2010 (Mem ref 2)

 Exec, load from logical addr 0x1100; vpn?

• Access page table to get ppn for vpn 1

• Mem ref 3: 0x5004

• Learn vpn 1 is at ppn 0

• Movl from 0x0100 into reg (Mem ref 4)

12

Earlier: How many mem refs with segmentation?

5 (3 instrs, 2 movl)

Advantages of Paging
No external fragmentation

• Any page can be placed in any frame in physical memory
Fast to allocate and free

• Alloc: No searching for suitable free space
• Free: Doesn’t have to coallesce with adjacent free space
• Just use bitmap to show free/allocated page frames

Simple to swap-out portions of memory to disk (later lecture)
• Page size matches disk block size
• Can run process when some pages are on disk
• Add “present” bit to PTE

Disadvantages of Paging
Internal fragmentation: Page size may not match size needed by

process
• Wasted memory grows with larger pages

Additional memory references à time-inefficient!
• Page table must be stored in memory
• MMU stores only base address of page table

Storage for page tables substantial à space-inefficient!
• Simple page table: Requires PTE for all pages in address space

• Naively, page table entry needed even if page not allocated
• Problematic with dynamic stack and heap within address space
• Page tables must be allocated contiguously in memory

• Due to linear access of page table entries

Stack

Code

Heap

Reducing Page Table sizes

How big are page tables?
1. PTE’s are 2 bytes, and 32 possible virtual page numbers

2. PTE’s are 2 bytes, virtual addrs are 24 bits, pages are 16 bytes

3. PTE’s are 4 bytes, virtual addrs are 32 bits, and pages are 4 KB

4. PTE’s are 4 bytes, virtual addrs are 64 bits, and pages are 4 KB

How big is each page table?

32 * 2 bytes = 64 bytes

2 bytes * 2^(24 – lg 16) = 2^21 bytes (2 MB)

4 bytes * 2^(32 – lg 4K) = 2^22 bytes (2 MB)

4 bytes * 2^(64 – lg 4K) = 2^54 bytes

code
heap

stack

Virt Mem Phys Mem

Waste!

Why ARE Page Tables so Large?

Many invalid page table entries

PFN valid prot

10 1 r-x
- 0
 -

23 1 rw-

- 0
 -

- 0
 -

- 0
 -

- 0
 -
 - 0
 -

- 0
 -

- 0
 -

- 0
 -

28 1 rw-
 4 1 rw-

…many more invalid…
how to avoid

storing these?

Format of linear page tables:

Avoid the simple linear page table

Use more efficient (but complex) data structures, instead of
the simple big array

Any data structure is possible in principle*

*assuming software managed TLB

Some approaches
1. Inverted Pagetables
2. Segmented Pagetables
3. Multi-level Pagetables
• Page the page tables
• Page the pagetables of page tables…

Approach 1: Inverted Page Table
Inverted Page Tables
•Only need entries for virtual pages w/ valid physical

mappings

Naïve approach:
Search through data structure <ppn, vpn+ASID> to find
match
• Too much time to search entire table

Better: Find possible matches entries by hashing vpn+ASID
• Smaller number of entries to search for exact match

Valid PTEs are Contiguous

Note “hole” in addr space:
valids vs. invalids are clustered

How did OS avoid allocating holes in
phys memory?

Use ideas from segmentation!

PFN valid prot

10 1 r-x
- 0
 -

23 1 rw-

- 0
 -

- 0
 -

- 0
 -

- 0
 -
 - 0
 -

- 0
 -

- 0
 -

- 0
 -

28 1 rw-
 4 1 rw-

…many more invalid…
how to avoid

storing these?

Approach 2: Segmented Page Tables
Divide address space into segments (code, heap, stack)

• Segments can be variable length

Divide each segment into fixed-sized pages
Logical address divided into three portions

page offset (12 bits)page number (8 bits)seg #
(4 bits)

Ideas
• Each segment has a page table
• Each segment tracks the base (physical address) and bounds of the page table for that

segment

Combining Paging and Segmentation

seg base bounds R W

0 0x002000 0xff (255) 1 0

1 0x000000 0x00 0 0

2 0x001000 0x0f (15) 1 1

...

0x01f

0x011

0x003

0x02a

0x013

...

0x00c

0x007

0x004

0x00b

0x006

...

0x001000

0x002000

0x002070 read:
0x202016 read:
0x104c84 read:
0x010424 write:
0x210014 write:
0x203568 read:

page offset (12 bits)page number (8 bits)seg #
(4 bits)

0x004070

0x003016

error

error

error

0x02a568

Page table

Advantages of Segments
• Supports sparse address spaces

• Decreases size of page tables
• If segment not used, not needed for page table

Advantages of Pages
• No external fragmentation
• Segments can grow without any reshuffling
• Can run process when some pages are swapped to disk (next

lecture)

Advantages of Both
• Increases flexibility of sharing

• Share either single page or entire segment. How?

Disadvantages of Paging with Segmentation

Potentially large page tables (for each segment)
• Must allocate each page table contiguously
• More problematic with more address bits
• Page table size?

• Assume 2 bits for segment, 18 bits for page number, 12 bits for offset

Each page table is:
= Number of entries * size of each entry
= Number of pages * 4 bytes
= 2^18 * 4 bytes = 2^20 bytes = 1 MB!!!

Other Approaches
1. Inverted Pagetables
2. Segmented Pagetables
3. Multi-level Pagetables
• Page the page tables
• Page the pages of page tables…

3) Multilevel Page Tables
Goal: Allow page tables to be allocated non-contiguously
Idea: Page the page tables

• Creates multiple levels of page tables; outer level page directory
• Only allocate page tables for pages in use
• Used in x86 architectures (hardware can walk known structure)

outer page
(8 bits)

inner page
(10 bits) page offset (12 bits)

30-bit address:

base of page directory

Multilevel example
PPN

0x3
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -

0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
 0x23
 -
 -
 0x80
 0x59
 -
 -
 -
 -
 -
 -
 -
 -
 -

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN
-
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 0x55
 0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

translate 0x01ABC

outer page
(4 bits)

inner page
(4 bits) page offset (12 bits)

20-bit address:

translate 0xFEED0

translate 0x00000

0x23ABC

0x10000

0x55ED0

VPN
0
 1
 2
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
15

Address format for Multilevel Paging

How should logical address be structured?
• How many bits for each paging level?

Goal?
• Each page table fits within a page
• PTE size * number PTE = page size

• Assume PTE size = 4 bytes
• Page size = 2^12 bytes = 4KB
• number PTE per page = (2^12 bytes per page) / (4 bytes per PTE)
• à number PTE = 2^10

• à # bits for selecting inner page = 10
Remaining bits for outer page:

• 30 – 10 – 12 = 8 bits

outer page inner page page offset (12 bits)

30-bit address:

