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Virtual addresses

Physical addresses

Base + Bounds

External Fragmentation

Paging VPN to PFN Translation



Virtual => Physical PAGE Mapping

How should OS translate VPN to PPN?
For segmentation, OS used a formula (e.g., phys addr = virt_offset + base_reg)
For paging, OS needs more general mapping mechanism
What data structure is good?
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VPN offset

1 1 0 1 0 11 0

PPN offset

Address Mapper

Big array: page table

Number of bits in
virtual address 
format does not 
need to equal
number of bits in 
physical address 
format 



The Mapping
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Where are page tables stored?

How big is a typical page table?
 - assume 32-bit address space
 - assume 4 KB pages
 - assume 4 byte entries

• Page table size = Num entries * size of each entry
• Num entries = num virtual pages = 2^(bits for vpn)
• Bits for vpn = 32– number of bits for page offset

= 32 – lg(4KB) = 32 – 12 = 20
• Num entries = 2^20 = 1 MB
• Page table size = Num entries * 4 bytes = 4 MB per process

Ideally, put it in fast hardware (MMU)…



Where are page tables stored?
Implication: Store each page table in memory
• Hardware finds page table base with register (e.g., CR3 on x86)

What happens on a context-switch?
• Change contents of page table base register to newly scheduled 

process
• Save old page table base register in PCB of descheduled process



Other PT info
What other info is in pagetable entries besides translation?
• valid bit
• protection bits
• present bit (needed later)
• reference bit (needed later)
• dirty bit (needed later)

Page table entries are just bits stored in memory
• Agreement between hardware and OS about interpretation



Memory Accesses with Pages
0x0010: movl 0x1100, %edi
0x0013: addl $0x3, %edi
0x0019: movl %edi, 0x1100

Assume PT is at phys addr 0x5000
Assume PTE’s are 4 bytes
Assume 4KB pages
How many bits for offset? 

Simplified view
of page table

2
0

80
99

Use of a page table doubles memory references

Physical Memory Accesses with Paging?
 1) Fetch instruction at logical addr 0x0010; vpn?

• Access page table to get ppn for vpn 0

• Mem ref 1: 0x5000

• Learn vpn 0 is at ppn 2

• Fetch instruction at  0x2010 (Mem ref 2)

 Exec, load from logical addr 0x1100; vpn?

• Access page table to get ppn for vpn 1

• Mem ref 3: 0x5004

• Learn vpn 1 is at ppn 0

• Movl from 0x0100 into reg (Mem ref 4)

12

Earlier: How many mem refs with segmentation?

5 (3 instrs, 2 movl)



Advantages of Paging
No external fragmentation

• Any page can be placed in any frame in physical memory
Fast to allocate and free

• Alloc: No searching for suitable free space
• Free: Doesn’t have to coallesce with adjacent free space
• Just use bitmap to show free/allocated page frames

Simple to swap-out portions of memory to disk (later lecture)
• Page size matches disk block size
• Can run process when some pages are on disk
• Add “present” bit to PTE



Disadvantages of Paging
Internal fragmentation: Page size may not match size needed by 

process
• Wasted memory grows with larger pages

Additional memory references à time-inefficient!
• Page table must be stored in memory
• MMU stores only base address of page table

Storage for page tables substantial à space-inefficient!
• Simple page table: Requires PTE for all pages in address space

• Naively, page table entry needed even if page not allocated
• Problematic with dynamic stack and heap within address space
• Page tables must be allocated contiguously in memory

• Due to linear access of page table entries

Stack

Code

Heap



Reducing Page Table sizes



How big are page tables?
1. PTE’s are 2 bytes, and 32 possible virtual page numbers

2. PTE’s are 2 bytes, virtual addrs are 24 bits, pages are 16 bytes

3. PTE’s are 4 bytes, virtual addrs are 32 bits, and pages are 4 KB

4. PTE’s are 4 bytes, virtual addrs are 64 bits, and pages are 4 KB

How big is each page table?

32  * 2 bytes = 64 bytes

2 bytes * 2^(24 – lg 16) = 2^21 bytes (2 MB)

4 bytes * 2^(32 – lg 4K) = 2^22 bytes (2 MB)

4 bytes * 2^(64 – lg 4K) = 2^54 bytes



code
heap

stack

Virt Mem Phys Mem

Waste!

Why ARE Page Tables so Large?



Many invalid page table entries

PFN valid prot 

10 1 r-x 
-  0
  -
 

23 1 rw-
 

-  0
  -
 
-  0
  -
 
-  0
  -
 
-  0
  -
 -  0
  -
 
-  0
  -
 
-  0
  -
 
-  0
  -
 
28 1 rw-
 4 1 rw-
 

…many more invalid…
how to avoid

storing these?

Format of linear page tables:



Avoid the simple linear page table

Use more efficient (but complex) data structures, instead of 
the simple big array

Any data structure is possible in principle*

*assuming software managed TLB



Some approaches
1. Inverted Pagetables
2. Segmented Pagetables
3. Multi-level Pagetables
• Page the page tables
• Page the pagetables of page tables…



Approach 1: Inverted Page Table
Inverted Page Tables
•Only need entries for virtual pages w/ valid physical 

mappings

Naïve approach: 
Search through data structure <ppn, vpn+ASID> to find 
match
• Too much time to search entire table

Better: Find possible matches entries by hashing vpn+ASID
• Smaller number of entries to search for exact match



Valid PTEs are Contiguous

Note “hole” in addr space: 
valids vs. invalids are clustered

How did OS avoid allocating holes in 
phys memory?
 

Use ideas from segmentation!

PFN valid prot 

10 1 r-x 
-  0
  -
 

23 1 rw-
 

-  0
  -
 
-  0
  -
 
-  0
  -
 
-  0
  -
 -  0
  -
 
-  0
  -
 
-  0
  -
 
-  0
  -
 
28 1 rw-
 4 1 rw-
 

…many more invalid…
how to avoid

storing these?



Approach 2: Segmented Page Tables
Divide address space into segments (code, heap, stack)

• Segments can be variable length

Divide each segment into fixed-sized pages
Logical address divided into three portions

page offset (12 bits)page number (8 bits)seg #
(4 bits)

Ideas
• Each segment has a page table
• Each segment tracks the base (physical address) and bounds of the page table for that 

segment



Combining Paging and Segmentation

seg base bounds R W

0 0x002000 0xff (255) 1 0

1 0x000000 0x00 0 0

2 0x001000 0x0f (15) 1 1

...

0x01f

0x011

0x003

0x02a

0x013

...

0x00c

0x007

0x004

0x00b

0x006

...

0x001000

0x002000

0x002070 read:
0x202016 read:
0x104c84 read:
0x010424 write:
0x210014 write:
0x203568 read:

page offset (12 bits)page number (8 bits)seg #
(4 bits)

0x004070

0x003016

error

error

error

0x02a568

Page table



Advantages of Segments
• Supports sparse address spaces

• Decreases size of page tables
• If segment not used, not needed for page table

Advantages of Pages
• No external fragmentation
• Segments can grow without any reshuffling
• Can run process when some pages are swapped to disk (next 

lecture)

Advantages of Both
• Increases flexibility of sharing

• Share either single page or entire segment. How?



Disadvantages of Paging with Segmentation

Potentially large page tables (for each segment)
• Must allocate each page table contiguously
• More problematic with more address bits
• Page table size?

• Assume 2 bits for segment, 18 bits for page number, 12 bits for offset

Each page table is: 
= Number of entries * size of each entry
= Number of pages * 4 bytes 
= 2^18 * 4 bytes = 2^20 bytes = 1 MB!!!



Other Approaches
1. Inverted Pagetables
2. Segmented Pagetables
3. Multi-level Pagetables
• Page the page tables
• Page the pages of page tables…



3) Multilevel Page Tables
Goal: Allow page tables to be allocated non-contiguously
Idea: Page the page tables 

• Creates multiple levels of page tables; outer level page directory
• Only allocate page tables for pages in use
• Used in x86 architectures (hardware can walk known structure)

outer page
(8 bits)

inner page
(10 bits) page offset (12 bits)

30-bit address:

base of page directory



Multilevel example
PPN

0x3
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 

0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
 0x23
 -
 -
 0x80
 0x59
 -
 -
 -
 -
 -
 -
 -
 -
 -

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN
-
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 0x55
 0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

translate 0x01ABC

outer page
(4 bits)

inner page
(4 bits) page offset (12 bits)

20-bit address:

translate 0xFEED0

translate 0x00000

0x23ABC

0x10000

0x55ED0

VPN
0
 1
 2
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
15



Address format for Multilevel Paging

How should logical address be structured?
• How many bits for each paging level?

Goal?  
• Each page table fits within a page
• PTE size * number PTE = page size

• Assume PTE size = 4 bytes
• Page size = 2^12 bytes = 4KB
• number PTE per page = (2^12 bytes per page) / (4 bytes per PTE)
• à number PTE = 2^10

• à # bits for selecting inner page = 10
Remaining bits for outer page: 

• 30 – 10 – 12 = 8 bits

outer page inner page page offset (12 bits)

30-bit address:


