
Memory
Virtualization

3) Dynamic Relocation
Goal: Protect processes from one another

Requires hardware support
• Memory Management Unit (MMU)

MMU dynamically changes process address at every memory reference
• Process generates logical or virtual addresses (in their address space)
• Memory hardware uses physical or real addresses

CPU MMU

Memory

Process runs here OS can control MMU

Logical address Physical address

Two operating modes
• Privileged (protected, kernel) mode: OS runs
• When enter OS (trap, system calls, interrupts, exceptions)
• Allows certain instructions to be executed

• Can manipulate contents of MMU
• Allows OS to access all of physical memory

• User mode: User processes run
• Perform translation of logical address to physical address

A minimal MMU contains base register for translation
• base: start location for address space

Hardware support for Dynamic Relocation

base moderegisters
32 bits 1 bit

mode
=
user?

no

yes

+
base

logical
address

physical
address

• Translation on every memory access of user process
• MMU adds base register to logical address to form physical address

• MMU

Implementation of Dynamic Relocation:
BASE REG

Dynamic Relocation with Base Register

Idea: translate virtual addresses to physical by adding a fixed
offset each time.

Store offset in base register

Each process has different value in base register

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

same code

VISUAL Example of DYNAMIC RELOCATION:
BASE REGISTER

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P1 is running

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P2 is running

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1
Physical

(Decimal notation)

Virtual

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical
(1024 + 100)

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

load 1124, R1

Virtual Physical
P1: load 100, R1

P2: load 100, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB Virtual Physical
P1: load 100, R1

P2: load 100, R1
load 1124, R1

load 4196, R1 (4096 + 100)

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB Virtual Physical
load 1124, R1

load 4196, R1

P1: load 100, R1

P2: load 100, R1

P2: load 1000, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB Virtual Physical
P1: load 100, R1

P2: load 100, R1

P2: load 1000, R1

load 1124, R1

load 4196, R1

load 5196, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB Virtual Physical
load 1124, R1

load 4196, R1

load 5196, R1

P1: load 100, R1

P2: load 100, R1

P2: load 1000, R1

P1: load 1000, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB Virtual Physical
P1: load 100, R1

P2: load 100, R1

P2: load 1000, R1

P1: load 1000, R1

load 1124, R1

load 4196, R1

load 5196, R1

load 2024, R1

Who Controls the Base Register?

What entity should do translation of addresses with base register?
(1) process, (2) OS, or (3) HW?

What entity should modify the base register?
(1) process, (2) OS, or (3) HW?

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB Virtual Physical
P1: load 100, R1

P2: load 100, R1

P2: load 1000, R1

P1: load 1000, R1

load 1124, R1

load 4196, R1

load 5196, R1

load 2024, R1

Can P2 hurt P1?
Can P1 hurt P2?

Does the base register mechanism protect processes from each other?

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB Virtual Physical

Can P2 hurt P1?
Can P1 hurt P2?

P1: load 100, R1

P2: load 100, R1

P2: load 1000, R1

P1: load 1000, R1

P1: store 3072, R1

load 1124, R1

load 4196, R1

load 5196, R1

load 2024, R1

store 4096, R1 (3072 + 1024)

Does the base register mechanism protect processes from each other?

4) Dynamic with Base+Bounds

• Idea: limit the address space with a bounds register

• Base register: smallest physical addr (or starting location)
• Bounds register: size of this process’s virtual address space
• Sometimes defined as largest physical address (base + size)

• OS kills process if process loads/stores beyond bounds

Implementation of
 BASE+BOUNDS

Translation on every memory access of user process
• MMU compares logical address to bounds register

• if logical address is greater, then generate error
• MMU adds base register to logical address to form physical address

base modeboundsregisters
32 bits 32 bits 1 bit

mode
=

user?

<
bounds?

no

no

yes

yes +
base

error

logical
address

physical
address

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P1 is running
bounds register

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P2 is running

base register
bounds register

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5196, R1
P1: load 1000, R1 load 2024, R1

Can P1 hurt P2?

P1: store 3072, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5196, R1
P1: load 1000, R1 load 2024, R1

Can P1 hurt P2?

P1: store 3072, R1 interrupt OS! 3072 > 1024

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5196, R1
P1: load 1000, R1 load 2024, R1

Can P1 hurt P2?

P1: store 3072, R1 interrupt OS!

Context-switch
• Add base and bounds registers to Process Control Block
• Steps

• Change to privileged mode
• Save base and bounds registers of old process
• Load base and bounds registers of new process
• Change to user mode and jump to new process

Protection requirements
• User process cannot change base and bounds registers
• User process cannot change to privileged mode

Managing Processes: Base & Bounds

Base and Bounds Advantages

• Provides protection (both read and write) across address
spaces

• Supports dynamic relocation
• Can place process initially at locations different from assumed in the

program code
• Also, move address spaces later if needed

• Simple, inexpensive implementation
• Few registers, little logic in MMU

• Fast
• Add and compare in parallel

Base and Bounds DISADVANTAGES

• Each process must be allocated contiguously in physical memory
• Must allocate memory that may not be used by process

• No partial sharing: Cannot share limited parts of address space

Stack

Code

Heap

0

2n-1

5) Segmentation

Divide address space into logical segments
• Each segment corresponds to logical entity in address space
• code, stack, heap

Each segment can independently:
• be placed separately in physical memory
• grow and shrink
• be protected (separate read/write/execute bits)

Stack

Code

Heap

0

2n-1

Segmented Addressing
Process now specifies segment and offset within segment
How does process designate a particular segment?
• Use part of logical (virtual) address

• High-order bits of logical address select segment
• Low-order bits of logical address select offset within segment

What if small address space, not enough bits?
• Implicitly by type of memory reference
• Special registers

Segmentation Implementation

Segment Base Bounds R W

0 0x2000 0x6ff 1 0

1 0x0000 0x4ff 1 1

2 0x3000 0xfff 1 1

3 0x0000 0x000 0 0

MMU contains Segment Table (per process)
• Each segment has own base and bounds, protection bits
• Example: 14-bit logical address, 4 segments; how many bits for segment? How many bits for offset?

remember:
1 hex digit->4 bits

Segmentation Implementation

Segment Base Bounds R W

0 0x2000 0x6ff 1 0

1 0x0000 0x4ff 1 1

2 0x3000 0xfff 1 1

3 0x0000 0x000 0 0

MMU contains Segment Table (per process)
• Each segment has own base and bounds, protection bits
• Example: 14-bit logical address, 4 segments; how many bits for segment? How many bits for offset?

remember:
1 hex digit->4 bits

Translate logical addresses (in hex) to physical addresses
0x0240:
0x1108:
0x265c:
0x3002:

Review: Segmentation
Assume 14-bit virtual addresses, high 2 bits indicate segment

Segments:
0=>code
1=>heap
2=>stack.

0x0000 0x1000 0x2000 0x3000 0x4000

0x4000 0x5000 0x6000 0x7000 0x8000

Virt Mem

Phys Mem

? ? ?Code Heap Stack

Seg Base Bounds

0

1

2

0xfff
0xfff
0x7ff

0x4000
0x5800
0x6800

Where does segment table live?

All registers, MMU

0x5800 0x6800

heap (seg1)

stack (seg2)
0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

load 0x2010, R1
Virtual (hex) Physical

Segment numbers:
 0: code+data
 1: heap
 2: stack

Visual Interpretation

heap (seg1)

stack (seg2)

load 0x2010, R1
Virtual (hex) Physical

0x1600 + 0x010 = 0x1610

Segment numbers:
 0: code+data
 1: heap
 2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

heap (seg1)

stack (seg2)

load 0x2010, R1
Virtual (hex) Physical

load 0x1010, R1

Segment numbers:
 0: code+data
 1: heap
 2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

0x1600 + 0x010 = 0x1610

heap (seg1)

stack (seg2)

load 0x2010, R1
Virtual (hex) Physical

load 0x1010, R1 0x400 + 0x010 = 0x410

Segment numbers:
 0: code+data
 1: heap
 2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

0x1600 + 0x010 = 0x1610

heap (seg1)

stack (seg2)

load 0x2010, R1
Virtual Physical

load 0x1010, R1
load 0x1100, R1

Segment numbers:
 0: code+data
 1: heap
 2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

0x400 + 0x010 = 0x410
0x1600 + 0x010 = 0x1610

heap (seg1)

stack (seg2)

load 0x2010, R1
Virtual Physical

load 0x1010, R1
load 0x1100, R1 0x400 + 0x100 = 0x500

Segment numbers:
 0: code+data
 1: heap
 2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

0x400 + 0x010 = 0x410
0x1600 + 0x010 = 0x1610

0x0010: movl 0x1100, %edi
0x0013: addl $0x3, %edi
0x0019: movl %edi, 0x1100

Physical Memory Accesses?
 1) Fetch instruction at logical addr 0x0010
• Physical addr:

 Exec, load from logical addr 0x1100

• Physical addr:
2) Fetch instruction at logical addr 0x0013

• Physical addr:

Exec, no load
3) Fetch instruction at logical addr 0x0019

• Physical addr:
 Exec, store to logical addr 0x1100

• Physical addr:

Seg Base Bounds

0 0x4000 0xfff
1 0x5800 0xfff
2 0x6800 0x7ff

0x4010

0x5900

0x4013

0x4019

0x5900

%rip: 0x0010

Total of 5 memory references (3 instruction fetches, 2 movl)

Memory accesses every instruction

Advantages of Segmentation

• Enables sparser allocation of memory address space than one base+bounds
• Stack and heap can grow independently
• Heap: If no data on free list, dynamic memory allocator requests more from OS (e.g., UNIX:

malloc calls sbrk())
• Stack: OS recognizes reference outside legal segment, extends stack implicitly

• Different protection for different segments
• Read-only status for code

• Enables sharing of some segments as desired

• Supports dynamic relocation of each segment

Stack

Code

Heap

Disadvantages of Segmentation?
Each segment must be allocated contiguously

• May not have sufficient physical memory for large
segments!

• Cannot support holding a part of a large segment in
memory

Fragmentation: Free memory that can’t be usefully allocated
Why? Free memory (hole) is too small and scattered

• Segmentation prohibits using this free space since segment is “indivisible”
Types of fragmentation

• External: Visible to allocator (e.g., OS)
• Internal: Visible to requester (e.g., if must allocate at some granularity)

Segment A

Segment C

Segment D

Segment B

Segment E

No contiguous space!

useful

free

Allocated to requester

Internal

External

Disadvantages of Segmentation?

Conclusion

HW+OS work together to virtualize memory
• Give illusion of private address space to each process

Add MMU registers for base+bounds so translation is fast
• OS not involved with every address translation, only on context switch or errors

Dynamic relocation with segments is good building block
• Next: Solve fragmentation with paging

Review: Match Description
• Description

• one process uses RAM at a time

• rewrite code & addresses before running

• add per-process starting location to virt
addr to obtain phys addr

• dynamic approach that verifies address is in
valid range

• several base+bound pairs per process

• Name of approach
 (covered previous lecture):

• Segmentation

• Base

• Static Relocation

• Time sharing

• Base + Bounds

Paging
Questions we answer:

What is paging?
Where are page tables stored?
What are advantages and disadvantages of paging?

Paging
Goal: Eliminate requirement that address space is contiguous
• Eliminate external fragmentation
• Grow segments as needed

Idea: Divide address spaces and physical memory into fixed-sized pages
• Size: 2n, Example: 4KB
• Physical page: page frame

Process 1

Process 2

Logical View

Ph
ys

ic
al

 V
ie

w

Code
Heap
Stack
Heap
Heap

Process 3

Translation of Page Addresses
• How to translate logical address to physical address?

• High-order bits of address designate page number
• Low-order bits of address designate offset within page

page number

frame number

page offset

page offset

Logical address

Physical address

32 bits

translate

20 bits 12 bits

No addition needed; just append bits correctly…

How does format of address space determine number of pages and size of pages?

Impact of Address Format

Page Size Low Bits (offset)

16 bytes 4

1 KB 10

1 MB 20

512 bytes 9

4 KB 12

Given known page size, how many bits are needed in address to specify offset in page?

Impact of Address Format

Page Size Low Bits
(offset)

Virt Addr Bits High Bits
(vpn)

16 bytes 4 10 6

1 KB 10 20 10

1 MB 20 32 12

512 bytes 9 16 7

4 KB 12 32 20

Given number of bits in virtual address and bits for offset,
how many bits for virtual page number?

7

Impact of Address Format

Page Size Low Bits
(offset)

Virt Addr Bits High Bits
(vpn)

16 bytes 4 10 6

Virt Pages

1 KB 10 20 10

1 MB 20 32 12

512 bytes 9 16 5

4 KB 12 32 20

Given number of bits for vpn, how many virtual pages can there be in an address space?

64

1 K

4 K

32

1 MB

