
CPU Virtualization:
Scheduling

Review of Concepts: Scheduling
Metrics (efficiency):

turnaround_time
response_time

Schedulers:
 FIFO
 SJF
 STCF
 RR

Workloads:
 arrival_time
 run_time

A

B

C

Q3

Q2

Q1

Q0 D

MLFQ

Fair sharing schedulers

Lottery
A: 100
B: 50

C: 250

Choose
randomly in
proportion to

tickets

Stride Scheduling
• Can we make lottery scheduling more “deterministic”?
• Goal: Make each process run deterministically in proportion to

its tickets
• Suppose tickets A: 100, B: 50, C: 250
• Define a stride: (large number, say 10000)/#tickets

• A: 100, B: 200, C: 40
• Every time process runs, increment a counter, pass, by the

stride
• Pick process with the minimum pass to schedule

Stride Scheduling example
Pass(A) Pass(B) Pass(C) Who runs?
stride=100 200 40

0 0 0 A
100 0 0 B
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A

Problems with stride scheduling
• Simple enough, but…
• Global state can be bad (across processes)
• Troublesome to provide fair share for new processes
• Suppose process D enters after 5 runs of stride scheduler

• What should its pass value be?
• Lottery: every scheduler run is likely to choose process proportional to

its fair share
• If the process needs to change its priority (tickets), how to

reinterpret its pass value?

Completely Fair Scheduling
• Goal: scheduling many 1000s of processes efficiently

Completely Fair Scheduler

• On Linux, in use since 2.6.23, has O(log N) runtime
• Move from MLFQ to Weighted Fair Queuing
• First major OS to use a fair scheduling algorithm
• Processes ordered by the amount of CPU time they use

• Gets rid of queues and linked lists in favor of a red-black tree of
processes

Key ideas of CFS
• Maintain a counter of cumulative execution time

• Virtual runtime, like the “pass” in stride scheduling
• Schedule process with least virtual runtime. Use R-B trees

17

15 25

22 27

• Left-most
process has
always used
the least time

• Scheduled
next 38

• Add the
process back to

the tree
• Rebalance the

tree

Precise vruntime
(nanoseconds)

Key ideas of CFS
• Don’t use a fixed time slice per run
• Instead of stride, divide up a “time over which scheduler should

be fair” into slices according to number of runnable processes
• sched_latency
• Like the “large number” we used to compute the stride previously

• But what if there are too many processes?
• Spend more time context switching than executing processes
• min_granularity

• Even if process time slice is not a multiple of the timer, can track
vruntime precisely using the actual execution time

Nice levels to set priorities
• Nice value between -20 to 20. Equivalent of tickets

ps ax -eo pid,ni,rtprio,cmd

Multi-Core Scheduling

Multiprocessor Scheduling

• The rise of the multicore processor is the source of
multiprocessor-scheduling proliferation.
• Multicore: Multiple CPU cores are packed onto a single

chip.

• Adding more CPUs does not make that single
application run faster.

• Rewrite application to run in parallel, using threads.

How to schedule jobs on Multiple CPUs?

Single CPU with cache

By keeping data in cache, the system can make slow
memory appear to be a fast one

CPU

Cache

Memory

• Small, fast memories
• Hold copies of popular data that is found in the

main memory.
• Utilize temporal and spatial locality

• Holds all the data
• Access to main memory is slower

than cache.

Cache

Main Memory

Cache Coherence

• Consistency of shared resource data stored in
multiple caches.

Bus

Memory

0 1 2 3

0. Two CPUs with caches sharing
memory

CPU 1

C
ac
he

CPU 0

C
ac
he

Initial D value is 0

Cache Coherence

• Consistency of shared resource data stored in
multiple caches.

Bus

Memory

0 1 2 3

1. CPU0 reads a data at address
1.

CPU 1

C
ac
he

CPU 1

C
ac
he

Bus

Memory

CPU 0

C
ac
he

CPU 0

C
ac
he

0 1 2 3

0. Two CPUs with caches sharing
memory

Cache Coherence

• Consistency of shared resource data stored in
multiple caches.

Bus

Memory

0 1 2 3

CPU 1

C
ac
he

CPU 0

C
ac
he

Cache Coherence

• Consistency of shared resource data stored in
multiple caches.

Bus

Memory

0 1 2 3

3. CPU1 re-reads the value at address
A

CPU 1

C
ac
he

CPU 0

C
ac
he

CPU 1

C
ac
he

CPU 0

C
ac
he

Bus

Memory
0 1 2 3

Data Inconsistency Problem!

Cache Coherence: one solution

• Bus snooping
• Each cache pays attention to memory updates by observing the

bus.
• When a CPU sees an update for a data item it holds in its cache, it

will notice the change and either invalidate its copy or update it.

• When accessing shared data across CPUs, mutual
exclusion primitives should be used to guarantee
correctness

Don’t forget synchronization

1 typedef struct __Node_t {
2 int value;
3 struct __Node_t *next;
4 } Node_t;
5
6 int List_Pop() {
7 Node_t *tmp = head; // remember old head ...
8 int value = head->value; // ... and its value
9 head = head->next; // advance head to next pointer
10 free(tmp); // free old head
11 return value; // return value at head
12 }

Don’t forget synchronization
1 typedef struct __Node_t {
2 int value;
3 struct __Node_t *next;
4 } Node_t;
5
6 int List_Pop() {
7 lock(&m)
8 Node_t *tmp = head; // remember old head ...
9 int value = head->value; // ... and its value
10 head = head->next; // advance head to next pointer
11 free(tmp); // free old head
11 unlock(&m)
12 return value; // return value at head
13 }

Cache Affinity

• Keep a process on the same CPU if at all possible
• A process builds up a fair bit of state in the cache of a CPU.
• The next time the process run, it will run faster if some of its

state is already present in the cache on that CPU.

A multiprocessor scheduler should consider cache
affinity when making its scheduling decision.

Cache Affinity

• Put all jobs that need to be scheduled into a single
queue.

• Each CPU simply picks the next job from the globally
shared queue. Simple.
• Cons:

• Some form of locking has to be inserted
• Lack of scalability
• Cache affinity

Cache Affinity?
• No cache affinity L

Scheduling with cache affinity

Scheduling with cache affinity

• Preserving affinity for most
• Jobs A through D are not moved across processors.
• Only job E Migrating from CPU to CPU.
• Implementing such a scheme can be complex.

Multi-queue Multiprocessor
Scheduling (MQMS)

• MQMS consists of multiple scheduling queues.
• Each queue will follow a particular scheduling discipline.
• When a job enters the system, it is placed on exactly one

scheduling queue.
• Avoid the problems of information sharing and

synchronization.

Multi-queue Multiprocessor
Scheduling (MQMS)

• With round robin, the system might produce a
schedule that looks like this:

MQMS provides more scalability and cache affinity.

Problem with MQMS?

• Load Imbalance

Need ways to balance load across cores over time by
migrating processes across cores

Summary

Understand goals (metrics) and workload, then design
scheduler around that

General purpose schedulers need to support processes with
different goals
Past behavior is good predictor of future behavior
Random algorithms (lottery scheduling) can be simple to
implement and avoid corner cases.
Multiprocessor scheduling: incorporate cache affinity &
contention

Memory
Virtualization

Questions answered

• What is in the address space of a process (review)?
• What are the different ways that that OS can virtualize memory?

• Time sharing, static relocation, dynamic
relocation (base, base + bounds,
segmentation)

• What hardware support is needed for dynamic relocation?

More Virtualization

1st part of course:Virtualization

Virtual CPU: illusion of private CPU registers

Virtual RAM: illusion of private memory

Memory Virtualization – Then (1974)

Albrecht (an astronomer) sits with pencil
paper working on code in front of a HP
bulky computer, with one processor and
a breathtaking 16 kilobytes of magnetic-
core memory and 1 Processor

Developed virtual memory system to
handle files on tape that were larger
than the available memory on his
Hewlett Packard 2116 microcomputer

Memory Virtualization – recently (2013)

Albrecht (an astronomer, circa
2013) in front of a datacenter
system with 40 processor
cores, 138 terabytes of
storage capacity and 83
gigabytes of RAM

5 million times more memory!

Motivation for Virtualization
Uniprogramming: One process runs at a time

User
Process

OSPhysical
Memory

0

Code

Heap

Stack

Address
Space

2n-1

Disadvantages:
• Only one process runs at a time
• Process can destroy OS

Goals of Mem Virtualization
Transparency

• Processes are not aware that memory is shared
• Works regardless of number and/or location of processes

Protection
• Cannot corrupt OS or other processes
• Privacy: Cannot read data of other processes

Efficiency
• Do not waste memory resources (minimize fragmentation)

Sharing
• Cooperating processes can share portions of address space

Abstraction: Address Space
Address space: Each process has set of addresses that map to bytes

Problem:

How can OS provide illusion of private address space to each
process?

Review:What is in an address space?

Address space has static and dynamic components

• Static: Code and some global variables

• Dynamic: Stack and Heap

Code

Heap

Stack

0

2n-1

Motivation for
Dynamic Memory

Why do processes need dynamic allocation of memory?
• Do not know amount of memory needed at compile time
• Must be pessimistic when allocate memory statically

• Allocate enough for worst possible case; Storage is used inefficiently

Recursive procedures
• Do not know how many times procedure will be nested

Complex data structures: lists and trees
• struct my_t *p = (struct my_t *)malloc(sizeof(struct my_t));

Two types of dynamic allocation
• Stack
• Heap

Where Are stacks Used?
OS uses stack for procedure call frames (local variables and parameters)

main () {
int A = 0; foo (A);
printf(“A: %d\n”, A);

}

void foo (int Z) {
int A = 2; Z = 5;
printf(“A: %d Z: %d\n”, A, Z);

}

Heap Organization

Advantage
• Works for all data structures

Disadvantages
• Allocation can be slow
• End up with small chunks of free space -

fragmentation
• Where to allocate 12 bytes? 16 bytes? 24 bytes??

• What is OS’s role in managing heap?
• OS gives big chunk of free memory to process; library manages individual

allocations

Definition: Allocate from any random location: malloc(), new()
• Heap memory consists of allocated areas and free areas (holes)
• Order of allocation and free is unpredictable

Free

Alloc

Free

Alloc

16 bytes

24 bytes

12bytes

16 bytes

A

B

Quiz: Match that Address Location
int x;
int main(int argc, char *argv[]) {
int y;
int *z = malloc(sizeof(int)););

}

Possible locations: static data, code, stack, heap What if no static data location?

Address Location

x Static data à Code

main Code

y Stack
z Stack
*z Heap

main? x?
y? z?
*z?

Memory Accesses
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int x;
x = x + 3;

}

otool -tv demo1.o
(or objdump on Linux)

0x10:
0x13:
0x19:

movl0x8(%rbp), %edi
addl $0x3, %edi
movl%edi, 0x8(%rbp)

%rbp is the base pointer:
points to base of current stack frame

How to Virtualize Memory?
Problem: How to run multiple processes simultaneously?

Addresses are “hardcoded” into process binaries.

 è How to avoid collisions?

Possible Solutions for Mechanisms (covered today):
1. Time Sharing
2. Static Relocation
3. Base
4. Base+Bounds
5. Segmentation

1) Time Sharing of Memory
Try similar approach to how OS virtualizes CPU

Observation:
OS gives illusion of many virtual CPUs by saving CPU registers to
memory
when a process isn’t running

Could give illusion of many virtual memories by saving memory to disk
when process isn’t running

Problems with Time
Sharing Memory

Problem: Ridiculously poor performance

Better Alternative: space sharing
• At same time, space of memory is divided across

processes

Remainder of solutions all use space sharing

2) Static Relocation
• Idea: OS rewrites each program before loading it as a process in memory

• Each rewrite for different process uses different addresses and pointers

• Change jumps, loads of static data

• 0x10:
• 0x13:
• 0x19:

movl 0x8(%rbp), %edi
addl $0x3, %edi
movl %edi, 0x8(%rbp)

0x1010: movl 0x8(%rbp), %edi
0x1013: addl $0x3, %edi
0x1019: movl %edi, 0x8(%rbp)

0x3010: movl 0x8(%rbp), %edi
0x3013: addl $0x3, %edi
0x3019: movl %edi, 0x8(%rbp)

rewrite

rewrite

(free)

Program Code

Heap

(free)

stack

(free)

Program Code

Heap

(free)

stack

(free)

4 KB

12 KB

16 KB

process 1

8 KB

process 2

0x1010: movl 0x8(%rbp), %edi
0x1013: addl $0x3, %edi
0x1019: movl %edi, 0x8(%rbp)

0x3010: movl 0x8(%rbp), %edi
0x3013: addl $0x3, %edi
0x3019: movl %edi, 0x8(%rbp)

Static: Layout in Memory

Static Relocation: Disadvantages

No protection
• Process can destroy OS or other processes
• Possible to create addresses on the fly, and read/write
• No privacy

Cannot move address space after it has been placed
• May not be able to allocate new process

3) Dynamic Relocation
Goal: Protect processes from one another

Requires hardware support
• Memory Management Unit (MMU)

MMU dynamically changes process address at every memory reference
• Process generates logical or virtual addresses (in their address space)
• Memory hardware uses physical or real addresses

CPU MMU

Memory

Process runs here OS can control MMU

Logical address Physical address

Hardware Support for Dynamic
Relocation

Two operating modes
• Privileged (protected, kernel) mode: OS runs
• When enter OS (trap, system calls, interrupts, exceptions)
• Allows certain instructions to be executed

• Can manipulate contents of MMU
• Allows OS to access all of physical memory

• User mode: User processes run
• Perform translation of logical address to physical address

Minimal MMU contains base register for translation
• base: start location for address space

Implementation of Dynamic
Relocation: BASE REG

base moderegisters
32 bits 1 bit

mode
=
user?

no

yes

+
base

logical
address

physical
address

• Translation on every memory access of user process
• MMU adds base register to logical address to form physical address

• MMU

