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Scheduling



Review of Concepts: Scheduling
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Stride Scheduling
• Can we make lottery scheduling more “deterministic”?
• Goal: Make each process run deterministically in proportion to 

its tickets
• Suppose tickets A: 100, B: 50, C: 250
• Define a stride: (large number, say 10000)/#tickets

• A: 100, B: 200, C: 40
• Every time process runs, increment a counter, pass, by the 

stride
• Pick process with the minimum pass to schedule



Stride Scheduling example
Pass(A)          Pass(B)         Pass(C)    Who runs?
stride=100       200                40

0                  0                0 A
100                0                0 B
100            200                0 C
100            200              40 C
100            200              80 C
100            200            120 A



Problems with stride scheduling
• Simple enough, but… 
• Global state can be bad (across processes)
• Troublesome to provide fair share for new processes
• Suppose process D enters after 5 runs of stride scheduler

• What should its pass value be?
• Lottery: every scheduler run is likely to choose process proportional to 

its fair share
• If the process needs to change its priority (tickets), how to 

reinterpret its pass value?



Completely Fair Scheduling
• Goal: scheduling many 1000s of processes efficiently



Completely Fair Scheduler

• On Linux, in use since 2.6.23, has O(log N) runtime
• Move from MLFQ to Weighted Fair Queuing
• First major OS to use a fair scheduling algorithm
• Processes ordered by the amount of CPU time they use

• Gets rid of queues and linked lists in favor of a red-black tree of 
processes



Key ideas of CFS
• Maintain a counter of cumulative execution time

• Virtual runtime, like the “pass” in stride scheduling
• Schedule process with least virtual runtime. Use R-B trees
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Key ideas of CFS
• Don’t use a fixed time slice per run
• Instead of stride, divide up a “time over which scheduler should 

be fair” into slices according to number of runnable processes
• sched_latency
• Like the “large number” we used to compute the stride previously

• But what if there are too many processes?
• Spend more time context switching than executing processes
• min_granularity

• Even if process time slice is not a multiple of the timer, can track 
vruntime precisely using the actual execution time



Nice levels to set priorities
• Nice value between -20 to 20. Equivalent of tickets

ps ax -eo pid,ni,rtprio,cmd



Multi-Core Scheduling



Multiprocessor Scheduling

• The rise of the multicore processor is the source of 
multiprocessor-scheduling proliferation.
• Multicore: Multiple CPU cores are packed onto a single 

chip.

• Adding more CPUs does not make that single 
application run faster. 

• Rewrite application to run in parallel, using threads.

How to schedule jobs on Multiple CPUs?



Single CPU with cache

By keeping data in cache, the system can make slow 
memory appear to be a fast one

CPU

Cache

Memory

• Small, fast memories
• Hold copies of popular data that is found in the 

main memory.
• Utilize temporal and spatial locality

• Holds all the data
• Access to main memory is slower 

than cache.

Cache

Main Memory



Cache Coherence

• Consistency of shared resource data stored in 
multiple caches.
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Cache Coherence

• Consistency of shared resource data stored in 
multiple caches.
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Cache Coherence

• Consistency of shared resource data stored in 
multiple caches.
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Cache Coherence

• Consistency of shared resource data stored in 
multiple caches.
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Cache Coherence: one solution

• Bus snooping
• Each cache pays attention to memory updates by observing the 

bus.
• When a CPU sees an update for a data item it holds in its cache, it 

will notice the change and either invalidate its copy or update it.

• When accessing shared data across CPUs, mutual 
exclusion primitives should be used to guarantee 
correctness



Don’t forget synchronization

1 typedef struct __Node_t {
2  int value;
3  struct __Node_t *next;
4 } Node_t;
5
6 int List_Pop() {
7  Node_t *tmp = head;     // remember old head ...
8  int value = head->value;  // ... and its value
9  head = head->next;    // advance head to next pointer
10  free(tmp);  // free old head
11  return value;  // return value at head
12 }



Don’t forget synchronization
1 typedef struct __Node_t {
2  int value;
3  struct __Node_t *next;
4 } Node_t;
5
6 int List_Pop() {
7       lock(&m)
8  Node_t *tmp = head;     // remember old head ...
9  int value = head->value;  // ... and its value
10  head = head->next;    // advance head to next pointer
11      free(tmp);  // free old head
11                unlock(&m)
12  return value;  // return value at head
13 }



Cache Affinity

• Keep a process on the same CPU if at all possible
• A process builds up a fair bit of state in the cache of a CPU.
• The next time the process run, it will run faster if some of its 

state is already present in the cache on that CPU.

A multiprocessor scheduler should consider cache 
affinity when making its scheduling decision.



Cache Affinity

• Put all jobs that need to be scheduled into a single 
queue.

• Each CPU simply picks the next job from the globally 
shared queue. Simple.
• Cons:

• Some form of locking has to be inserted 
• Lack of scalability
• Cache affinity



Cache Affinity?
• No cache affinity L 



Scheduling with cache affinity



Scheduling with cache affinity

• Preserving affinity for most
• Jobs A through D are not moved across processors.
• Only job E Migrating from CPU to CPU.
• Implementing such a scheme can be complex.



Multi-queue Multiprocessor 
Scheduling (MQMS)

• MQMS consists of multiple scheduling queues.
• Each queue will follow a particular scheduling discipline.
• When a job enters the system, it is placed on exactly one 

scheduling queue.
• Avoid the problems of information sharing and 

synchronization.



Multi-queue Multiprocessor 
Scheduling (MQMS)

• With round robin, the system might produce a 
schedule that looks like this:

MQMS provides more scalability and cache affinity.



Problem with MQMS?

• Load Imbalance

Need ways to balance load across cores over time by 
migrating processes across cores



Summary

Understand goals (metrics) and workload, then design 
scheduler around that

General purpose schedulers need to support processes with 
different goals
Past behavior is good predictor of future behavior
Random algorithms (lottery scheduling) can be simple to 
implement and avoid corner cases.
Multiprocessor scheduling: incorporate cache affinity & 
contention



Memory 
Virtualization



Questions answered

• What is in the address space of a process (review)?
• What are the different ways that that OS can virtualize memory?

• Time sharing, static relocation, dynamic
relocation (base, base + bounds,
segmentation)

• What hardware support is needed for dynamic relocation?



More Virtualization

1st part of course:Virtualization

Virtual CPU: illusion of private CPU registers

Virtual RAM: illusion of private memory



Memory Virtualization – Then (1974)

Albrecht (an astronomer) sits with pencil 
paper working on code in front of a HP 
bulky computer, with one processor and 
a breathtaking 16 kilobytes of magnetic-
core memory and 1 Processor

Developed virtual memory system to 
handle files on tape that were larger 
than the available memory on his 
Hewlett Packard 2116 microcomputer



Memory Virtualization – recently (2013)

Albrecht (an astronomer, circa 
2013) in front of a datacenter 
system with 40 processor 
cores, 138 terabytes of 
storage capacity and 83 
gigabytes of RAM

5 million times more memory!



Motivation for Virtualization
Uniprogramming: One process runs at a time

User 
Process

OSPhysical 
Memory

0

Code

Heap

Stack

Address 
Space

2n-1

Disadvantages:
• Only one process runs at a time
• Process can destroy OS



Goals of Mem Virtualization
Transparency

• Processes are not aware that memory is shared
• Works regardless of number and/or location of processes

Protection
• Cannot corrupt OS or other processes
• Privacy: Cannot read data of other processes

Efficiency
• Do not waste memory resources (minimize fragmentation)

Sharing
• Cooperating processes can share portions of address space



Abstraction: Address Space
Address space: Each process has set of addresses that map to bytes

Problem:

How can OS provide illusion of private address space to each 
process?

Review:What is in an address space?

Address space has static and dynamic components

• Static: Code and some global variables

• Dynamic: Stack and Heap

Code

Heap

Stack

0

2n-1



Motivation for 
Dynamic Memory

Why do processes need dynamic allocation of memory?
• Do not know amount of memory needed at compile time
• Must be pessimistic when allocate memory statically

• Allocate enough for worst possible case; Storage is used inefficiently

Recursive procedures
• Do not know how many times procedure will be nested

Complex data structures: lists and trees
• struct my_t *p = (struct my_t *)malloc(sizeof(struct my_t));

Two types of dynamic allocation
• Stack
• Heap



Where Are stacks Used?
OS uses stack for procedure call frames (local variables and parameters)

main () {
int A = 0; foo (A);
printf(“A: %d\n”, A);

}

void foo (int Z) {
int A = 2; Z = 5;
printf(“A: %d Z: %d\n”, A, Z);

}



Heap Organization

Advantage
• Works for all data structures

Disadvantages
• Allocation can be slow
• End up with small chunks of free space - 

fragmentation
• Where to allocate 12 bytes? 16 bytes? 24 bytes??

• What is OS’s role in managing heap?
• OS gives big chunk of free memory to process; library manages individual 

allocations

Definition: Allocate from any random location: malloc(), new()
• Heap memory consists of allocated areas and free areas (holes)
• Order of allocation and free is unpredictable

Free

Alloc

Free

Alloc

16 bytes

24 bytes

12bytes 

16 bytes

A

B



Quiz: Match that Address Location
int x;
int main(int argc, char *argv[]) { 
int y;
int *z = malloc(sizeof(int)););

}

Possible locations: static data, code, stack, heap What if no static data location?

Address Location

x Static data à Code

main Code

y Stack
z Stack
*z Heap

main? x? 
y? z?
*z?



Memory Accesses
#include <stdio.h> 
#include <stdlib.h>

int main(int argc, char *argv[]) { 
int x;
x = x + 3;

}

otool -tv demo1.o
(or objdump on Linux)

0x10:
0x13:
0x19:

movl0x8(%rbp), %edi 
addl $0x3, %edi 
movl%edi, 0x8(%rbp)

%rbp is the base pointer:
points to base of current stack frame



How to Virtualize Memory?
Problem: How to run multiple processes simultaneously?

Addresses are “hardcoded” into process binaries.

 è How to avoid collisions?

Possible Solutions for Mechanisms (covered today):
1. Time Sharing
2. Static Relocation
3. Base
4. Base+Bounds
5. Segmentation



1) Time Sharing of Memory
Try similar approach to how OS virtualizes CPU

Observation:
OS gives illusion of many virtual CPUs by saving CPU registers to 
memory
when a process isn’t running

Could give illusion of many virtual memories by saving memory to disk 
when process isn’t running

















Problems with Time 
Sharing Memory

Problem: Ridiculously poor performance

Better Alternative: space sharing
• At same time, space of memory is divided across 

processes

Remainder of solutions all use space sharing



2) Static Relocation
• Idea: OS rewrites each program before loading it as a process in memory

• Each rewrite for different process uses different addresses and pointers

• Change jumps, loads of static data

• 0x10:
• 0x13:
• 0x19:

movl 0x8(%rbp), %edi 
addl $0x3, %edi
movl %edi, 0x8(%rbp)

0x1010: movl 0x8(%rbp), %edi 
0x1013: addl $0x3, %edi 
0x1019: movl %edi, 0x8(%rbp)

0x3010: movl 0x8(%rbp), %edi 
0x3013: addl $0x3, %edi 
0x3019: movl %edi, 0x8(%rbp)

rewrite

rewrite



(free)

Program Code

Heap

(free)

stack

(free)

Program Code

Heap

(free)

stack

(free)

4 KB

12 KB

16 KB

process 1

8 KB

process 2

0x1010: movl 0x8(%rbp), %edi 
0x1013: addl  $0x3, %edi 
0x1019: movl %edi, 0x8(%rbp)

0x3010: movl 0x8(%rbp), %edi 
0x3013: addl $0x3, %edi 
0x3019: movl %edi, 0x8(%rbp)

Static: Layout in Memory



Static Relocation: Disadvantages

No protection
• Process can destroy OS or other processes
• Possible to create addresses on the fly, and read/write
• No privacy

Cannot move address space after it has been placed
• May not be able to allocate new process



3) Dynamic Relocation
Goal: Protect processes from one another

Requires hardware support
• Memory Management Unit (MMU)

MMU dynamically changes process address at every memory reference
• Process generates logical or virtual addresses (in their address space)
• Memory hardware uses physical or real addresses

CPU MMU

Memory

Process runs here OS can control MMU

Logical address Physical address



Hardware Support for Dynamic 
Relocation

Two operating modes
• Privileged (protected, kernel) mode: OS runs
• When enter OS (trap, system calls, interrupts, exceptions)
• Allows certain instructions to be executed

• Can manipulate contents of MMU
• Allows OS to access all of physical memory

• User mode: User processes run
• Perform translation of logical address to physical address

Minimal MMU contains base register for translation
• base: start location for address space



Implementation of Dynamic 
Relocation: BASE REG

base moderegisters
32 bits 1 bit

mode
=
user?

no

yes

+
base

logical 
address

physical 
address

• Translation on every memory access of user process
• MMU adds base register to logical address to form physical address

• MMU


