
CPU Virtualization:
Scheduling

Process Creation
Two ways to create a process

• Build a new empty process from scratch
• Copy an existing process and change it appropriately

Option 1: New process from scratch
• Steps
• Load specified code and data into memory; Create empty call stack
• Create and initialize PCB (make it look like context-switch)
• Put process on ready list

• Advantages: No wasted work (compared to option 2)
• Disadvantages: Difficult to express all possible options for setup, complex
• Process permissions, where to write I/O, environment variables
• Example: WindowsNT has call with 10 arguments

Process Creation

Option 2: Clone an existing process and change it
• Example: Unix fork() and exec()
• Fork(): Clones the calling process
• Exec(char *file): Overlays file image on calling process

• Fork()
• Stop current process and save its state
• Make copy of code, data, stack, and PCB
• Add new PCB to ready list
• Any changes needed to child process? Yes!

• Exec(char *file)
• Replace current data and code segments with those in specified file

• Advantages: Flexible, clean, simple
• Disadvantages: Wasteful to perform copy and then overwrite of memory

Unix Process Creation
Fork/exec crucial to how the user’s shell is implemented!

While (1) {
 Char *cmd = getcmd();
 Int retval = fork();
 If (retval == 0) {
 // This is the child process
 // Setup the child’s process environment here
 // E.g., where is standard I/O, how to handle signals?
 exec(cmd);
 // exec does not return if it succeeds
 printf(“ERROR: Could not execute %s\n”, cmd);
 exit(1);
 } else {
 // This is the parent process; Wait for child to finish
 int pid = retval;
 wait(pid);
 }
}

Scheduling
Questions answered in this lecture:

What are different scheduling policies, such as:
FCFS, SJF, STCF, RR and MLFQ?

What type of workload performs well with each scheduler?
What scheduler does Linux currently use?
 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/

Disclaimer: Materials derived, reused, and modified from OSTEP book and lectures of Prof. Andrea and Remzi Arpaci-Dusseau and Prof. Yojip Won

Chapters 7-10

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
https://developer.ibm.com/tutorials/l-completely-fair-scheduler/

CPU Virtualization: Two Components
Dispatcher (Previous lecture)

• Low-level mechanism
• Performs context-switch

• Switch from user mode to kernel mode
• Save execution state (registers) of old process in k-stack, PCB
• Insert PCB in ready queue
• Load state of next process from k-stack, PCB to registers
• Switch from kernel to user mode
• Jump to instruction in new user process

• Scheduler (Today)
• Policy to determine which process gets CPU when

Review: Process State Transitions

Running Ready

Blocked

Scheduled

Descheduled

I/O: initiate I/O: done

How to transition? (“mechanism”)
When to transition? (“policy”)

Vocabulary
Workload: set of job descriptions (arrival time,

run_time)

• Job: View as current CPU burst of a process

• Process alternates between CPU and I/O
process moves between ready and blocked queues

Scheduler: logic that decides which ready job to run

Metric: measurement of quality of schedule

Scheduling Performance Metrics
Minimize turnaround time

• Do not want to wait long for job to complete
• Completion_time – arrival_time

Minimize response time
• Schedule interactive jobs promptly so users see output quickly
• Initial_schedule_time – arrival_time

Maximize throughput
• Want many jobs to complete per unit of time

Maximize resource utilization
• Keep expensive devices busy

Minimize overhead
• Reduce number of context switches

Maximize fairness
• All jobs get same amount of CPU over some time interval

Workload Assumptions
1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

Scheduling Basics

Metrics:
turnaround_time
response_time

Schedulers:
 FIFO
 SJF
 STCF
 RR

Workloads:
 arrival_time
 run_time

Example: workload, scheduler, metric
JOB arrival_time (s) run_time (s)
A ~0 10
B ~0 10
C ~0 10

FIFO: First In, First Out
 - also called FCFS (first come first served)
 - run jobs in arrival_time order

What is our turnaround? completion_time - arrival_time

FIFO: Event Trace
Time Event
0 A arrives
0 B arrives
0 C arrives
0 run A
10 complete A
10 run B
20 complete B
20 run C
30 complete C

JOB arrival_time (s) run_time (s)
A ~0 10
B ~0 10
C ~0 10

FIFO (Identical JOBS)
A B C

0 20 40 60 80

Gantt chart:
Illustrates how jobs are scheduled over time on a CPU

JOB arrival_time (s) run_time (s)
A ~0 10
B ~0 10
C ~0 10

FIFO (IDENTICAL JOBS)

A B C

0 20 40 60 80

What is the average turnaround time?
Def: turnaround_time = completion_time - arrival_time

[A,B,C arrive]

FIFO (IDENTICAL Jobs)

0 20 40 60 80

What is the average turnaround time?
Def: turnaround_time = completion_time - arrival_time
(10 + 20 + 30) / 3 = 20s

A: 10s
B: 20s
C: 30s

Scheduling Basics
Metrics:

turnaround_time
response_time

Schedulers:
 FIFO
 SJF
 STCF
 RR

Workloads:
 arrival_time
 run_time

Workload Assumptions
1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. The run-time of each job is known

Any Problematic Workloads for FIFO?

Workload: ?

Scheduler: FIFO

Metric: turnaround is high

Example: Big First Job
JOB arrival_time (s) run_time (s)
A ~0 60
B ~0 10
C ~0 10

Draw Gantt chart for this workload and policy…
What is the average turnaround time?

A CB

0 20 40 60 80

Average turnaround time: 70s

A: 60s
B: 70s
C: 80s

Example: Big First Job
JOB arrival_time (s) run_time (s)
A ~0 60
B ~0 10
C ~0 10

Convoy Effect

Passing the Tractor
Problem with Previous Scheduler:
 FIFO: Turnaround time can suffer when short

jobs must wait for long jobs
New scheduler:
 SJF (Shortest Job First)
 Choose job with smallest run_time

Shortest Job First
JOB arrival_time (s) run_time (s)
A ~0 60
B ~0 10
C ~0 10

What is the average turnaround time with SJF?

SJF Turnaround Time

ACB

0 20 40 60 80

A: 80s
B: 10s
C: 20s

What is the average turnaround time with SJF?
(80 + 10 + 20) / 3 = ~36.7s

For minimizing average turnaround time (with no preemption):
SJF is provably optimal
Moving shorter job before longer job improves turnaround time of short
job more than it harms turnaround time of long job

Average turnaround
with FIFO: 70s

Scheduling Basics
Metrics:

turnaround_time
response_time

Schedulers:
 FIFO
 SJF
 STCF
 RR

Workloads:
 arrival_time
 run_time

Workload Assumptions
1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. The run-time of each job is known

Shortest Job First (Arrival Time)
JOB arrival_time (s) run_time (s)
A ~0 60
B ~10 10
C ~10 10

What is the average turnaround time with SJF?

Stuck Behind a Tractor Again

A CB

0 20 40 60 80

[B,C arrive]

What is the average turnaround time?

JOB arrival_time (s) run_time (s)
A ~0 60
B ~10 10
C ~10 10

(60 + (70 – 10) + (80 – 10)) / 3 = 63.3s

Preemptive Scheduling
Prev schedulers:

• FIFO and SJF are non-preemptive
• Only schedule new job when previous job voluntarily

relinquishes CPU (performs I/O or exits)
New scheduler:

• Preemptive: Potentially schedule different job at any point
by taking CPU away from running job

• STCF (Shortest Time-to-Completion First)
• Always run job that will complete the quickest

• (That job may change over time)

NON-PREEMPTIVE: SJF

A CB

0 20 40 60 80

Average turnaround time:

[B,C arrive]

JOB arrival_time (s) run_time (s)
A ~0 60
B ~10 10
C ~10 10

(60 + (70 – 10) + (80 – 10)) / 3 = 63.3s

PREEMPTIVE: STCF

A CB

0 20 40 60 80

Average turnaround time with STCF?

A

A: 80s
B: 10s
C: 20s

JOB arrival_time (s) run_time (s)
A ~0 60
B ~10 10
C ~10 10

[B,C arrive]

36.6
Average turnaround time with SJF: 63.3s

Scheduling Basics

Metrics:
turnaround_time
response_time

Schedulers:
 FIFO
 SJF
 STCF
 RR

Workloads:
 arrival_time
 run_time

Response Time
Sometimes we care about when job starts instead of when

it finishes
New metric:
response_time = first_run_time - arrival_time

Response vs. Turnaround

A

0 20 40 60 80

B’s turnaround: 20s

B

[B arrives]

B’s response: 10s

Round-Robin Scheduler
Prev schedulers:
 FIFO, SJF, and STCF can have poor response time
New scheduler: RR (Round Robin)

Alternate ready processes every fixed-length time-slice

FIFO vs RR

0 5 10 15 20

A B C

0 5 10 15 20

ABC…

Avg Response Time?
(0+1+2)/3 = 1

Avg Response Time?
(0+5+10)/3 = 5

Other reasons why RR could be better?
If don’t know run-time of each job, gives short jobs a chance
to run and finish fast

In what way is RR worse?
Ave. turn-around time with equal job lengths is horrible

Scheduling Basics
Metrics:

turnaround_time
response_time

Schedulers:
 FIFO
 SJF
 STCF
 RR

Workloads:
 arrival_time
 run_time

Review- Workload Assumptions
1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. The run-time of each job is known

 (need smarter, fancier scheduler)

MLFQ
(Multi-Level Feedback Queue)

• Goal: general-purpose scheduling

• Must support two job types with distinct goals
 - “interactive” programs care about response time
 - “batch” programs care about turnaround time

• Approach: multiple levels of round-robin
- each level has higher priority than lower levels and
preempts them

• MLFQ has a number of distinct queues.

• Each queue is assigned a different priority level.

Priorities
Rule 1: If priority(A) > Priority(B), A runs
Rule 2: If priority(A) == Priority(B), A & B run in RR

A

B

C

Q3

Q2

Q1

Q0 D

“Multi-level”

How to know how to set priority?

Approach 1: nice
Approach 2: history “feedback”

[High Priority]

History

• Use past behavior of process to predict future behavior
• Common technique in systems

• Processes alternate between I/O and CPU work

• Guess how CPU burst (job) will behave based on past
CPU bursts (jobs) of this process

More MLFQ Rules

Rule 1: If priority(A) > Priority(B), A runs

Rule 2: If priority(A) == Priority(B), A & B run in RR

More rules:
Rule 3: Processes start at top priority
Rule 4: If job uses whole slice, demote process
(longer time slices at lower priorities)

0 5 10 15 20

One Long Job (Example)

Q3

Q2

Q1

Q0

A four-queue scheduler with time slice 10ms

Long batch job – DNA analysis

120 140 160 180 200

An Interactive Process Joins

Q3

Q2

Q1

Q0

Interactive job performs quick operation and does an I/O

Interactive process never uses entire time slice, so never demoted

120 140 160 180 200

Problems with MLFQ?

Q3

Q2

Q1

Q0

Problems
 - unforgiving + starvation
 - gaming the system

120 140 160 180 200

Problems with MLFQ?

Q3

Q2

Q1

Q0

Problem: Low priority job may never get scheduled

Periodically boost priority of all jobs (or all jobs that
haven’t been scheduled)

120 140 160 180 200

Prevent Gaming the Schedule

Q3

Q2

Q1

Q0

Problem: High priority job could trick scheduler and get more CPU by
performing I/O right before time-slice ends

Fix: Account for job’s total run time at priority level (instead of just this
time slice); downgrade when exceed threshold

Lottery Scheduling
Goal: proportional (fair) share
Sometimes we just care about fairly sharing the CPU.

Fair-share scheduler
- Guarantee that each job obtain a certain percentage of CPU time.
- Not optimized for turnaround or response time

Approach:
 - give processes lottery tickets
 - whoever wins runs
 - higher priority => more tickets

Amazingly simple to implement

Lottery Scheduling
• Tickets

- Represent the share of a resource that a process should receive
- Percent of tickets represents its share of the system resource in question.

• Example
- There are two processes, A and B.

- Process A has 75 tickets è receive 75% of the CPU
- Process B has 25 tickets è receive 25% of the CPU

Lottery Scheduling
• The scheduler picks a winning ticket.
• Load the state of that winning process and runs it.

• Example
• There are 100 tickets

• Process A has 75 tickets: 0 ~ 74
• Process B has 25 tickets: 75 ~ 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63

Resulting scheduler: A B A A B B BA A A A A A A A

Intuition:
The longer these two jobs compete,
The more likely they are to achieve the desired percentages.

Lottery Code

int counter = 0;
int winner = getrandom(0, totaltickets);
node_t *current = head;
while (current) {
 counter += current->tickets;
 if (counter > winner) break;
 current = current->next;
}
// current is the winner

Lottery example

int counter = 0;
int winner = getrandom(0, totaltickets);
node_t *current = head;
while(current) {
 counter += current->tickets;
 if (counter > winner) break;
 current = current->next;
}
// current gets to run

Job A
(1)

Job B
(1)head

Job C
(100)

Job D
(200)

Job E
(100) null

Who runs if winner is:
 50
 350
 0

Other Lottery Ideas

Ticket Transfers

Ticket Currencies

Ticket Inflation

(read more in OSTEP)

Can make lottery scheduling
deterministically fair, too

