
CPU Virtualization

Virtualization:
The CPU

Questions answered in this lecture:
What is a process? (Chapter 4-5)
Why is limited direct execution a good approach for virtualizing the

CPU? (Chapter 6)
What execution state must be saved for a process? (Chapter 6)
What 3 modes could a process in? (Chapter 6)

RUTGERS UNIVERSITY
Computer Sciences Department

CS 416 + 518 Operating Systems Design Sudarsun Kannan

What is a Process?
Process: An execution stream in the context of a process state

What is an execution stream?
• Stream of executing instructions
• Running piece of code
• “thread of control”

What is process state?
• Everything that the running code can affect or be affected by
• Registers
• General purpose, floating point, status, program counter, stack pointer

• Address space
• Heap, stack, and code

• Open files

Processes vs. Programs

A process is different than a program
• Program: Static code and static data
• Process: Dynamic instance of code and data

Can have multiple process instances of same program
• Example: many users can run “ls” at the same time

Process Creation

code
static data
Program

CPU Memory

Process Creation

code
static data
Program

CPU Memory

code
static data
heap

stack
Process

Recall: Process Memory Segments
• The OS allocates memory for each process - ie. a running

program – for data and code

• This memory consists of different segments

• Stack - for local variables – incl. command line
arguments and environment variables

• Heap - for dynamic memory

• Data segment for – global uninitialised variables (.bss) –
global initialised variables (.data)

• Code segment typically read-only

Processes vs. Threads

• A process is different than a thread

• Thread: “Lightweight process” (LWP)
• An execution stream that shares an address space
• Multiple threads within a single process

• Example:
• Two processes examining same memory address

0xffe84264
see different values (I.e., different contents)

• Two threads examining memory address 0xffe84264
see same value (I.e., same contents)

Virtualizing the CPU
Goal: Give each process the impression that it alone is actively
using the CPU
Resources can be shared in time and space
Assume single uniprocessor
Time-sharing (today’s multi-processors: more nuanced)

But while sharing, processes
 should not perform restricted operations
 should not run forever or make the entire system slow

One possibility: let the OS inspect each process instruction
before running
 The problem? Performance

How to Provide Good CPU Performance?
Direct execution

• Allow user process to run directly on hardware
• OS creates process and transfers control to starting point (i.e., main())

Problems with direct execution?
1. Process could do something restricted

 Could read/write other process data (disk or memory)
2. Process could run forever (slow, buggy, or malicious)

 OS needs to be able to switch between processes
3. Process could do something slow (like I/O)

 OS wants to use resources efficiently and switch CPU to other process

Solution: Limited direct execution:
 OS and the hardware maintain some control

Problem 1: Restricted Ops
How can we ensure user process can’t unilaterally perform restricted

operations?
Solution: privilege levels/separation provided by hardware (status bit on

a register)
• OS runs in kernel mode (not restricted)

• Instructions for interacting with devices enabled
• Could have many privilege levels (advanced topic)

• User processes run in user mode (restricted mode)
• Interacting with devices directly will trap (software interrupt)
• Pre-set routines that run when privileged/restricted instructions run

How can a process legitimately access a device?
• System calls (function call implemented by OS)
• Change privilege level through system call (trap)

Legitimate use: System Call

syscall(SYS_call, arg1, arg2, …);

RAM

Process P

System Call

sy
s_
re
ad

P wants to call read()

RAM

Process P

P can only see its own memory because of user mode
(other areas, including kernel, are hidden)

System Call

RAM

Process P

P wants to call read() but no way to call it directly

System Call

http://www.cheat-sheets.org/saved-copy/Linux_Syscall_quickref.pdf
List of Linux System Calls

RAM

Process P

movl $6, %eax; int $64

System Call

read():

Assembly convention: movl %eax, …
• CPU uses contents of EAX register as source operand

RAM

Process P

movl $6, %eax; int $64

trap-table indexsyscall-table index

System Call

RAM

Process P

movl $6, %eax; int $64

Kernel mode: we can do anything!

trap-table indexsyscall-table index

System Call

RAM

Process P

movl $6, %eax; int $64

sy
sc
al
l

sy
s_
re
ad

trap-table indexsyscall-table index

System Call

Follow entries to correct system call code

RAM

Process P

movl $6, %eax; int $64

sy
sc
al
l

sy
s_
re
ad

buf

trap-table indexsyscall-table index

System Call

Kernel can access user memory to fill in user buffer
return-from-trap at end to return to Process P

System Call

Num Function

6 sys_read

7 sys_write

$63 illegal access

$64 system call

$65 Device Interrupt

System CallApp movl $6, %eax; int $64

H/W-level Trap Table

Syscall() {
 sysnum = %eax
 sys_handle= get_fn_table(sysnum)
 sys_handle ();

}

OS
Syscall table

What to limit?
User processes are not allowed to directly perform:
• Arbitrary memory access
• Disk I/O
• Special x86 instructions like lidt

What if a process tries to do something privileged/restricted on
its own?
Typical response: trap (hardware); OS kills process

Problem 2: How to take the CPU away?

OS requirements for multiprogramming (or multitasking)
• Mechanism: To switch between processes
• Policy: To decide which process to run at what time

Separation of policy and mechanism
• Recurring theme in OS design
• Policy: Decision-maker to optimize some workload performance metric

• Which process to run when?
• Process Scheduler: next lecture

• Mechanism: Low-level code that implements the decision
• "How”?
• Process Dispatcher: Today’s lecture

Dispatch Mechanism

OS runs dispatch loop

while (1) {

 run process A for some time-slice

 stop process A and save its context

 load context of another process B

 }

Question 1: How does dispatcher regain control after the time slice?
Question 2: What execution context must be saved and restored?

Context-switch

Q1: How does Dispatcher regain control?

Option 1: Cooperative Multi-tasking
• Trust process to relinquish CPU to OS through traps

• Examples: System call, page fault (access page not in main
memory), or error (illegal instruction or divide by zero)

• Provide special yield() system call

Cooperative Approach

P1

yield() call

Cooperative Approach

OS

yield() call

Cooperative Approach

OS

yield() return

Cooperative Approach

P2

yield() return

Cooperative Approach

P2

yield() call

Q1: How Does Dispatcher regain control?

• Problem with cooperative approach?
• Disadvantages: Processes can misbehave

• By avoiding all traps and performing no I/O, can take
over entire machine

• Only solution: Reboot!

• Not performed in modern operating systems

Q1: How does Dispatcher regain control?

Option 2: Regain control without cooperation
• Guarantee OS can obtain control periodically. How?
• Enter OS by enabling periodic alarm clock

• Hardware generates timer interrupt (CPU or separate chip)
• Example: Every 10ms

• User must not be able to mask timer interrupt (privileged operation)
• Dispatcher counts interrupts between context switches

• Example: Waiting 20 timer ticks gives 200 ms time slice
• Common time slices range from 10 ms to 200 ms
• Research systems today: ~5 microseconds

Use hardware mechanisms (timer, traps) to regain control

Q2: What Context must be Saved?

CS416 Eat & Sleep

“Now where
was I…”

Context save
and restore

Q2: What Context must be Saved?
Dispatcher must save the context of the process when it’s not running

• Save it in process control block (PCB) (or process descriptor)
• PCB is a structure maintained for each process in the OS

What information is stored in PCB?
• PID
• Process state (I.e., running, ready, or blocked)
• Execution state (all registers, PC, stack pointer) -- Context
• Scheduling priority
• Accounting information (parent and child processes)
• Credentials (which resources can be accessed, owner)
• Pointers to other allocated resources (e.g., open files)

Requires special hardware support. Why?
• Hardware saves process PC and PSR on interrupts

Q3: What’s inside a PCB?

// the information xv6 tracks about each process
// including its register context and state
struct proc {
 char *mem; // Start of process memory
 uint sz; // Size of process memory
 char *kstack; // Bottom of kernel stack
 // for this process
 enum proc_state state; // Process state
 int pid; // Process ID
 struct proc *parent; // Parent process
 int killed; // If non-zero, have been killed
 struct file *ofile[NOFILE]; // Open files
 struct inode *cwd; // Current directory
 struct context context; // Switch here to run process
 struct trapframe *tf; // Trap frame for the
 // current interrupt
};

Conceptually:
Separate kernel

thread of execution
per process

Process A
…

Operating System Hardware Program

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Process A
…

Operating System Hardware Program

Handle the trap
Call switch() routine
 save regs(A) to proc-struct(A)
 restore regs(B) from proc-struct(B)
 switch to k-stack(B)
 return-from-trap (into B)

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Process A
…

Operating System Hardware Program

Must have been saved
the last time OS
switched B out

Handle the trap
Call switch() routine
 save regs(A) to proc-struct(A)
 restore regs(B) from proc-struct(B)
 switch to k-stack(B)
 return-from-trap (into B)

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Process A
…

Operating System Hardware Program

Handle the trap
Call switch() routine
 save regs(A) to proc-struct(A)
 restore regs(B) from proc-struct(B)
 switch to k-stack(B)
 return-from-trap (into B)

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Process A
…

Process B
…

Operating System Hardware Program

Q4: What Context must be Saved?
// the registers will save and restore
// to stop and subsequently restart a process
struct context {
 int eip; // Index pointer register
 int esp; // Stack pointer register
 int ebx; // Called the base register
 int ecx; // Called the counter register
 int edx; // Called the data register
 int esi; // Source index register
 int edi; // Destination index register
 int ebp; // Stack base pointer register
};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
 RUNNABLE, RUNNING, ZOMBIE };

Problem 3: Slow Ops such as I/O?

When running process performs op that does not use CPU, OS
switches to process that needs CPU (policy issues)

OS must track state of each process:
• Running:

• On the CPU (only one on a uniprocessor)
• Ready:

• Waiting for the CPU
• Blocked

• Asleep: Waiting for I/O or synchronization to complete

Running

Blocked

Ready

Transitions?

OS must track every process in system
• Each process identified by unique Process ID (PID)

OS maintains queues of all processes
• Ready queue: Contains all ready processes
• Event queue: One logical queue per event

• e.g., disk I/O and locks
• Contains all processes waiting for that event to complete

Next Lecture: Policy for determining which ready
process to run

Problem 3: Slow Ops such as I/O?

SummaryVirtualization: Context switching gives each process impression it
has its own CPU

Direct execution makes processes fast
Limited execution at key points ensures OS retains control

Hardware is crucial for limited direct execution
• Privilege separation: user vs kernel mode
• Timer interrupts
• Automatic register saves and restores

