
Operating Systems

Computers everywhere Software everywhere

Making software useful means making it…
• Interact with human users

• Interact with the physical world

• Process data

• Easy to develop software

• Easy to run software

Hardware access

Abstractions

Resource isolation; performance

This Course: Operating Systems
Abstractions: How exactly does modern software use hardware?

Resource Management: How to isolate resources?

How to achieve the above correctly and with high performance?

Operating systems form the foundation of modern computing.

Conceptual learning and intensive programming

What is an Operating System?

Software that abstracts and manages hardware resources.

Operating System

Users

Applications

Hardware

What hardware are we talking about?

write()/read()

SA
TA

malloc()
Mem

or
y

Co
ntr

oll
er

Application

Cache

OS
Memory

DRAM

File
System

send()/ recv()
Network

Disk

Network
adapter

Operating system provides…
• Software library (abstraction) between applications and

hardware to make the hardware easier to use

• Simple, uniform view of diverse hardware devices

• Mechanisms and policies for resource management, to
provision and isolate hardware across many applications

• Effective multi-tenant and multi-application systems

#1. Abstraction
What abstraction does modern OS typically provide for each resource?

CPU: process and/or thread
Memory: address space
Storage: files

Advantages of OS providing abstraction?
Allow applications to reuse common facilities
Make different devices look the same
Provide higher-level or more useful functionality

Challenges
What are the correct abstractions?
How much of the hardware capabilities should be exposed?

System Calls

• System call allows user to tell the OS what to do on hardware

• The OS provides a standard software interface (APIs)

• A typical OS exports a few hundred system calls

• Run programs, access memory, access hardware devices, …

#2. Resource Management

Want fair and efficient use of hardware across applications
Advantages of OS providing resource management:

Protect applications from one another
Provide efficient access to resources (cost, time, energy)
Provide fair access to resources

Challenges
What are the correct mechanisms?
What are the correct policies?

Benefits of studying Operating Systems

Pragmatic: Understand the limits of software performance
Behavior of OS impacts entire machine
Tune application performance
Apply knowledge across many layers

• Computer architecture, programming languages, data structures and algorithms, and
performance modeling

Puzzle solving: Fun to understand large, complex systems
Technology: Build, modify, or administer an operating system

Course Logistics

About us
• Faculty Instructor: Srinivas Narayana

• http://www.cs.rutgers.edu/~sn624
• sn624@rutgers.edu
• Office hours in person Wed 4—5 pm ET (or by appointment)

• Subject to change in the next 1—2 weeks. TA office hours TBA
• Lectures Wed 8:30—11:30 ET

• TAs and Recitations: two UG sections, one G section
• Qiongwen Xu (qx51), Harishankar Vishwanathan (hv90), Adithya

Murugadass (am3372)
• Post q’s to Piazza (Canvas announcement to sign up)
• Class info: http://www.cs.rutgers.edu/~sn624/416-F23/

13

http://www.cs.rutgers.edu/~sn624
mailto:sn624@rutgers.edu
http://www.cs.rutgers.edu/~sn624/416-F23

Class philosophy
• We want you to learn and to be successful

• Attend recitations and office hours regularly to discuss material

• Be proactive: interact, ask, support.
• Use Piazza

• Full video lectures will be made available

14

Grading
• 45% programming projects
• 20% weekly quizzes
• 15% mid term
• 20% final exam (cumulative)

• Schedule of projects, exams, etc. will be made available at
https://www.cs.rutgers.edu/~sn624/416-F23

• Book: https://pages.cs.wisc.edu/~remzi/OSTEP/

• This course uses absolute grading. There is no curve

https://www.cs.rutgers.edu/~sn624/416-F23
https://pages.cs.wisc.edu/~remzi/OSTEP/

45% programming projects
• 4 large software projects

• Groups of 2. Pick partner and keep them throughout semester

• Program and short write-up required

• Use hosted VMs (will provide instructions for use)

• Hand projects in on Canvas

45% programming projects

• Please follow all instructions carefully and exactly

• You will lose significant points if:
• We are unable to run your code
• Your information (e.g., team member names and netids) is

incorrect or incomplete
• We do not receive your submission in a timely fashion

17

Collaboration and Integrity policies
• Intellectual collaboration is welcome and encouraged
• Do

• Ask questions on Piazza
• Discuss projects and problem sets with us and each other
• Read references (textbooks, Internet tutorials) widely
• Acknowledge each other and all the references in psets & project reports

• Each problem set & project has a prompt on collaboration
• Include who you talked to, references (including on the web) you consulted
• Be as accurate and complete as possible

Collaboration and Integrity policies
• All your written (coded) work must be your (team’s) own

• Understand the problem deeply and produce your own solutions
• Do not

• blindly lift or incorporate other solutions
• look at other people’s code or solutions
• copy code from the web (e.g., other people’s GitHub projects)
• post problem sets or projects (questions or solutions) on piazza, GitHub,

Chegg, CourseHero, etc.
• Ask us for permission if you are ever in doubt
• We will check for plagiarism across submissions from this year and

the last few years

Programming projects are time-intensive
• Cannot score high by pulling all-nighters close to the due date

• Please approach the projects (and this course) diligently from
day 1

• Get the most out of this course

• Use the projects to improve your programming skills
• Job search, grad school, better learning outcomes

20% weekly quizzes
• Due every Tuesday night over the semester (including next Tue)

• Work individually

• Can consult the textbook and own notes

• No collaboration or searching for answers on the Internet

• We will consider the 10 highest scores out of 13

Late policy
• Don’t be late

• If you must be late, inform us in advance

• If you cannot inform us in advance (e.g., medical), provide
official medical note of absence through the University

• Unexcused late submissions will result in losing significant
fraction of points

24/7 Grading Policy
• You may not dispute a grade or request a regrade before 24

hours or after 7 days of receiving it

• Please contact us if you have a legitimate regrading request:

• After 24 hours of receiving the grade: Please take the time to review
your case before contacting the instructors

• Before 7 days have elapsed: we don’t want to forget what the
test/project was all about.

Help, Accommodations, etc.
• We’ll make every effort to accommodate reasonable requests

that support your learning better

• sn624@cs.rutgers.edu

• Course staff is committed to help you succeed

mailto:sn624@cs.rutgers.edu

Recommendation Letters
For students applying to grad school or jobs, and seeking a
reference letter:

Do well in the class (i.e., get an A)

Ask questions and interact with the instructor during office hours

Three Easy Pieces

Operating systems are complex.

OS Organization

How to systematically approach studying it?

Three pieces: (1) Virtualization

• Make each application believe it has each hardware
resource to itself

• Resources considered in this course: CPU and memory

Virtualizing CPU

• The system has a very large number of virtual CPUs.

• Turning a single CPU into a seemingly infinite number of
CPUs.

• Allowing many programs to seemingly run at once,
virtualizing the CPU

Virtualizing CPU

Virtualizing CPU

Virtualizing CPU

Even though we have only one processor, all
four programs seem to be running at the
same time!

Virtualizing Memory

• The physical memory is an array of bytes.

• A program keeps all of its data structures in memory.

• Read memory (load):

• Specify an address to be able to access the data

• Write memory (store):

• Specify the data to be written to the given address

Virtualizing Memory
include < unistd.h >

 # include < stdio.h >
 # include < stdlib.h >
 # include " common.h "

 int main(int argc , char * argv [])
 {
 int *p = malloc (sizeof (int)); // a1: allocate some memory
 assert(p != NULL);
 printf ("(%d) address of p: %08x \ n",

 getpid (), (unsigned) p); // a2: print out the address of the memory

 * p = 0 ; // a3: put zero into the first slot of the memory
 while (1) {
 Spin(1);
 * p = *p + 1 ;
 printf ("(%d) p: %d \ n", getpid (), *p); // a4
 }
 return 0 ;
 } gcc mem.c –o mem

Virtualizing Memory

prompt> ./mem
[1] 10
memory address of p: 00200000
p: 1
p: 2
p: 3
p: 4
p: 5
ˆC

The newly allocated memory is at address 00200000 .

Virtualizing Memory
prompt> ./mem &; ./mem &
[1] 10
[2] 11
memory address of p: 00200000
memory address of p: 00200000
(10) p: 1
(11) p: 1
(11) p: 2
(10) p: 2
(10) p: 3
(10) p: 3
ˆC

•It is as if each running program has its own private memory .

•Each program could allocate memory at the same address

•Each updates the value at address 00200000 independently.

You may or may not
get this output.

(non-deterministic
malloc()).

Virtualizing Memory

•Each process accesses its own private virtual address space.

•The OS maps address space onto the physical memory.

•A memory reference within one running program does not
affect the address space of other processes.

•Physical memory is a shared resource, managed by the OS.

Three pieces: (2) Concurrency

Concurrency: Events are occurring simultaneously and may interact
with one another

OS must be able to handle concurrent events
Easier case

Hide concurrency from independent processes

Trickier case
Manage concurrency with interacting processes
• Provide abstractions (locks, semaphores, condition variables, shared memory, critical

sections) to processes
• Ensure processes do not deadlock
• Interacting threads must coordinate access to shared data

Concurrency

Concurrency

The main program creates two threads.
 Thread: a function running within the same memory space.
 Each thread start running in a routine called worker().
 worker(): increments a counter

Concurrency
Loops determines how many times each of the two
workers will increment the shared counter in a loop.

Three pieces: (3) Persistence

Persistence: Access information permanently
Lifetime of information is longer than lifetime of any one process
Machine may be rebooted, machine may lose power or crash unexpectedly

Issues:
Provide abstraction so applications do not know how data is stored : Files,

directories (folders), links
Correctness with unexpected failures
Performance: disks are very slow; many optimizations needed!

Demo
File system does work to ensure data updated correctly

Persistence

RAM

Process P

movl $6, %eax; int $64

trap-table indexsyscall-table index

System Call

Persistence

What does the OS do to write to disk?
○ Figure out where on disk this new data will reside
○ Issue I/O requests to the underlying storage device
○ File system handles system crashes during write

Journaling or copy-on-write
 Carefully ordering writes to disk

Next lecture: CPU virtualization

Next steps
• Finish weekly quiz by next Tuesday 8 pm ET

• Look out for C self-assessment homework (not graded) and review

• Starting projects early helps the project grade significantly

• Sign up for class Piazza (link TBA on canvas announcement)
• Ask questions well ahead of time

• Contact me if interested: independent study & research opp’s

• See you at next week’s lecture

