Network Layer: Router Design, Protocols

Lecture 20 http://www.cs.rutgers.edu/~sn624/352-S22

Srinivas Narayana

Review: Fabrics

Fabric goal: Ferry as many packets as possible from input to output ports as quickly as possible.

Nonblocking fabrics

• High-speed switching fabrics designed to be nonblocking:

- If an output port is "available", an input port can always transmit to it without being blocked by the switching fabric itself
- Crossbars are nonblocking by design

 Shared memory can be designed to be nonblocking if memory is optimized to be fast enough

- With a nonblocking fabric, queues aren't formed due to the switching fabric.
- With a nonblocking fabric, there are no queues due to inefficiencies at the input port or the switching fabric
- Queues only form due to contention for the output port
 - Fundamental, unavoidable, given the route

Nonblocking fabrics

- With a nonblocking fabric, queues aren't formed due to the switching fabric.
- With a nonblocking fabric, there are no queues due to inefficiencies at the input port or the switching fabric
- Queues only form due to contention for the output port
 - Fundamental, unavoidable, given the route
- Typically, these queues form on the output side
 - But can also "backpressure" to the input side if there is high contention for the output port
 - i.e.: can't move pkts to output Qs since buffers full, so buffer @ input

Control (plane) processor

- A general-purpose processor that "programs" the data plane:
 - Forwarding table
 - Scheduling and buffer management policy
- Implements the routing algorithm by processing routing protocol messages
 - Mechanism by which routers collectively solve the Internet routing problem
 - More on this soon.

Router design: the bigger picture

Control plane

Longest Prefix Matching

Review: Route lookup

- Table lookup matches a packet against an IP prefix
 - Ex: 65.12.45.2 matches 65.0.0.0/8
- Prefixes are allocated to organizations by Internet registries
- But organizations can reallocate a subset of their IP address allocation to other orgs

Note: it's possible for the organization to retain its assigned IP block.

A closer look at the forwarding table

- 200.23.18.0/23 is inside 200.23.16.0/20
- A packet with destination IP address 200.23.18.xx is in both prefixes
 - i.e., both entries match

the packet?

	Dst IP Prefix	Output port	
	65.0.0/8	3	
	128.9.0.0/16	1	
	200.23.18.0/23	4 (towards B)	
(200.23.16.0/20	7 (towards A)	
rd			

200.23.16.0/20

• The org prefers B, so should choose B

Q: How should the router choose to forwa

Longest Prefix Matching (LPM)

- Use the longest matching prefix, i.e., the most specific route, among all prefixes that match the packet.
- Policy borne out of the Internet's IP allocation model: prefixes and sub-prefixes are handed out
- Internet routers use longest prefix matching.
 - Very interesting algorithmic problems
 - Challenges in designing efficient software and hardware data structures

Dst IP Prefix	Output port
65.0.0/8	3
128.9.0.0/16	1
200.23.18.0/23	4 (towards B)
200.23.16.0/20	7 (towards A)
	65.0.0.0/8 128.9.0.0/16 200.23.18.0/23

200.23.16.0/20

Internet routers perform longestprefix matching on destination IP addresses of packets.

Why is LPM prevalent?

- Rutgers Verizon AT&T Specific route
- An ISP (e.g., Verizon) has allocated a sub-prefix (or "subnet") of a larger prefix that the ISP owns to an organization (e.g., Rutgers)
- Further, the ISP announces the aggregated prefix to the Internet to save on number of forwarding table memory and number of announcements
- The organization (e.g., Rutgers) is reachable over multiple paths (e.g., through another ISP like AT&T)
- The organization has a preference to use one path over another, and expresses this by announcing the longer (more specific) prefix
- Internet routers forward based on the longer prefix

IPv4 Datagram Format

The rest of this lecture and the next

- We'll talk about some support protocols and mechanisms for the network layer
 - Protocols: DHCP, ICMP, ARP
 - Mechanisms: NAT
 - We'll also talk about IP version 6 (IPv6)
- Some of these protocols use an IP header underneath their own header (ICMP) or replace the IP header with their own (ARP)
 - But these shouldn't be construed as transport/network protocols
 - They are fundamental to supporting IP/network layer functionality
 - More appropriately discussed as support protocols for the network layer

The network layer is all about reachability. Every protocol we'll see solves a sub-problem.

Dynamic Host Configuration Protocol (DHCP)

How does an endpoint get its IP addr?

- One possibility: hard-code the IP address on the endpoint
 - e.g., a system admin writing addresses in a file
 - Linux: /etc/network/interfaces
 - Mac OS X (10.14.6): system preferences > Network > name of interface > advanced > TCP/IP > "Manually"
- Another possibility: dynamically receive an address "from the network"
 - DHCP: Dynamic Host Configuration Protocol
 - Provide plug-and-play functionality for endpoints (e.g., phones, laptops)

Many similar bootstrapping problems

- How does a host get its IP address?
- How does a host know its local DNS server?
- How does a host know its netmask?
 - i.e., so that it can know which other hosts are in the same network
 - Note: the details how A and B talk to each other changes significantly when A and B are in the same network vs. different network
- How does a host know how to reach other networks?
 - i.e., which router is at the "border" of the current network?
 - This router is also called the gateway router: crucial for an endpoint to communicate with another endpoint external to the network

How DHCP works

- An endpoint that just joined a network knows nothing about it
 - Endpoint doesn't even have an IP address for its point of attachment
- We solved a similar bootstrapping problem before:
 - Domain Name Service (DNS) to retrieve addresses
- Often, it makes little sense to have the endpoint contact a "known" server to receive an IP address
 - E.g., connecting to a brand-new network you've never been in
- The only idea that really works is to ask everyone
 - Broadcast a query

How DHCP works

- DHCP allows a host to dynamically obtain its IP address from a server on a network when it joins the network
- DHCP can allow a host to be mobile across different networks, obtaining IP addresses as needed
- DHCP uses leases on addresses
 - Host must renew lease periodically
 - Allows network to reuse an IP with an expired lease, reclaiming addresses from inactive hosts

DHCP client-server scenario

DHCP server: 223.1.2.5

223.1.2.4 Arriving client

DHCP runs on UDP ports 67 (server) and 68 (client) Client's initial IP address is set to 0.0.00 Yiaddr stands for "your IP address" – an address value the server sends to the client for consideration Note that the IP allocation has an associated lifetime (lease period)

Multiple DHCP servers can coexist

DHCP returns more than an IP address

- Name and IP address of the local DNS server
- Netmask of the IP network the host is on
 - Useful to know whether another endpoint is inside or outside the current IP network
- Address of the gateway router to enable the endpoint to reach other IP networks

Your home router runs DHCP

- Likely, your home devices (laptops, tablets, phones) are all using DHCP-assigned IP addresses
- The DHCP server is running on the control processor of your home's access router (e.g., WiFi router)
- You can access the DHCP client program on Linux using the command dhclient and on Linux using sudo ipconfig <interface> DHCP

Summary of DHCP

- Want endpoints to have plug and play functionality
 - Avoid tedious manual configuration of IP addresses and other information
- DHCP: a general bootstrapping mechanism for critical information required for network layer functionality
- Hosts can be simple: receive information from DHCP servers by broadcasting over the network