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Review: TCP New Reno
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Review: Goal of steady state operation
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ACK-clocked: Send new 
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(2) Keep transmissions over the 
bottleneck link back to back



Bandwidth-Delay Product



Steady state cwnd for a single flow
• Suppose the bottleneck link has rate C
• Suppose the propagation round-trip time is T
• Suppose:

• Ignore transmission delays for this example
• Sender transmits at highest rate with ACK clocking (steady state)

• Q1: What’s the queueing delay at the bottleneck link?

• Q2: how much data is in flight over a single RTT?

• C * T
• ACKs take time T to arrive (total RTT = propagation RTT)
• In the meantime, sender is transmitting at rate C



The Bandwidth-Delay Product
• C * T = bandwidth-delay product (BDP): 
• The amount of data in flight for a sender transmitting at the ideal rate during 

the ideal round-trip delay of a packet

• Note: this is just the amount of data “on the pipe” at steady state

Data
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What happens if cwnd < C * T?
• i.e., the bottleneck link isn’t kept fully busy
• i.e., the sender is sending even slower than the bottleneck link
• Since window = min(flow control window, congestion window)
• Flow control window must be larger than the BDP to use network effectively

Data

Data in flight < C * T 

Not back-to-back on bottleneck!  



The Bandwidth-Delay Product
• Q: What happens if cwnd > C * T?
• i.e., where are the rest of the in-flight packets?

• A: Waiting at the bottleneck router queues!

Data

C * T 

Packets come out 
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rate C, no faster



Router buffers and the max cwnd
• Router buffer memory is finite: queues can only be so long
• If the router buffer size is B, there is at most B data waiting in the queue

• If cwnd increases beyond C * T + B, data is dropped!
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Summary
• Bandwidth-Delay Product (BDP) governs the desired window 

size of a single flow at steady state

• If window < BDP, sender is using the network ineffectively
• Corollary: flow control (advertised) window must be BDP or more

• If window > BDP + B, packet drops
• If BDP < window < BDP + B, queueing and increased delays

• The bottleneck router buffer size governs how much the cwnd
can exceed the BDP before packet drops occur



Detecting and Reacting to 
Packet Loss



Detecting packet loss
• So far, all the algorithms we’ve studied have a coarse loss 

detection mechanism: RTO timer expiration
• Let the RTO expire, drop cwnd all the way to 1 MSS

• Analogy: you’re driving
• Get super close to the car in front (RTO) and then jam the brakes really 

hard (set cwnd := 1)
• Q: Can you see the car in front from afar and slow proportionately?

• That is, can the sender see packet loss coming in advance?
• And reduce cwnd gently?



Can we detect loss earlier than RTO?
• Key idea: use the information in the ACKs. How?

• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs
• Occur when network is reordering packets, or a few (but not all) packets in 

the window were lost

• Reduce cwnd when you see many duplicate ACKs
• Consider many dup ACKs a strong indication that packet was lost
• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
• Make cwnd reduction gentler than setting cwnd = 1; recover faster



Fast Retransmit & Fast 
Recovery
Introduced in TCP New Reno
Used today by all TCP congestion control algorithms!



Distinction: In-flight versus window
• So far, window and in-flight referred to the same data  
• Fast retransmit & fast recovery differentiate the two notions
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TCP fast retransmit (RFC 2581)
• The fact that ACKs are coming means that data is getting delivered 

to the receiver, albeit with some loss.
• Note: Before the dup ACKs arrive, we assume inflight = cwnd

• TCP sender does two actions with fast retransmit



TCP fast retransmit (RFC 2581)
• (1) Reduce the cwnd and in-flight gently
• Don’t drop cwnd all the way down to 1 MSS

• Reduce the amount of in-flight data multiplicatively
• Set inflight à inflight / 2
• That is, set cwnd = (inflight / 2) + 3MSS
• This step is called multiplicative decrease
• Algorithm also sets ssthresh to (old)inflight / 2

• Aside: Multiplicative decrease is essential for fairness among TCP 
connections.



TCP fast retransmit (RFC 2581)
• Example: Suppose cwnd and inflight (before triple dup ACK) 

were both 8 MSS. 
• After triple dup ACK, reduce inflight and ssthresh to 4 MSS
• Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS
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TCP fast retransmit (RFC 2581)
• (2) The seq# from dup ACKs is immediately retransmitted

• That is, don’t wait for an RTO if there is sufficiently strong evidence 
that a packet was lost



TCP fast recovery (RFC 2581)
• Sender keeps the reduced inflight until a new ACK arrives
• New ACK: an ACK for the seq# that was just retransmitted
• May also include the (three or more) pieces of data that were subsequently 

delivered to generate the duplicate ACKs

• Conserve packets in flight: transmit some data over lossy periods 
(rather than no data, which would happen if cwnd := 1)



TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK
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TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK
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TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK
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TCP fast recovery (RFC 2581)
• Eventually a new ACK arrives, acknowledging the retransmitted 

data and all data in between
• Deflate cwnd to half of cwnd before fast retransmit.
• cwnd and inflight are aligned and equal once again

• Perform additive increase from this point! (cwnd = ssthresh)
cwnd = 3
inflight = 3
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Additive Increase/Multiplicative Decrease
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TCP New Reno performs additive increase and 
multiplicative decrease of its congestion 

window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP 
algorithms, including BBR.

[It is necessary for fairness across TCP flows.]



Summary: TCP loss detection & reaction

Fast Retransmit
• Triple dup ACK: sufficiently 

strong signal that network has 
dropped data, before RTO
• Immediately retransmit data
• Multiplicatively decrease in-

flight data to half of its value

Fast Recovery
• Maintain this reduced amount of 

in-flight data as long as dup 
ACKs arrive
• Data is successfully getting 

delivered
• When new ACK arrives, do 

additive increase from there on

• Don’t wait for an RTO and then set the cwnd to 1 MSS
• Tantamount to waiting to get super close to the car in front and then 

jamming the brakes very hard
• Instead, react proportionately by sensing pkt loss in advance


