
Congestion Control
(Part 3)

Lecture 17
http://www.cs.rutgers.edu/~sn624/352-S22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S22

receiver

sender

What’s the
bottleneck link
rate? How to
adapt how much
data to keep in
flight?

Congestion Control

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Window <= Congestion window

Sender’s
view:

Distributed algorithm
converging to an
efficient and fair
outcome

1. Get to a “reasonable”
estimate of bottleneck link
rate fast: Slow start

2. Adapt slowly once you get
closer to the link rate:
congestion avoidance

Maintain an ongoing estimate
of bottleneck link rate:
Congestion window

Review: TCP New Reno

1K

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt
Congestion

Window

Say MSS = 1 KByte

54 MSS

Set ssthresh to
27 MSS

Loss occurs at
cwnd = 40K

Loss occurs at
cwnd = 54K

Set ssthresh to
20 MSS

Additive

increase

Slow

sta
rt

Additive

increase

(ex
po

ne
ntia

l g
row

th)

Review: Goal of steady state operation

Sender Receiver

Send packet
burst (as allowed
by window) Receive data

packet

Send ACKReceive ACK

Data

ACKs

(1) Keep transmissions
ACK-clocked: Send new
data on ACK

(2) Keep transmissions over the
bottleneck link back to back

Bandwidth-Delay Product

Steady state cwnd for a single flow
• Suppose the bottleneck link has rate C
• Suppose the propagation round-trip time is T
• Suppose:

• Ignore transmission delays for this example
• Sender transmits at highest rate with ACK clocking (steady state)

• Q1: What’s the queueing delay at the bottleneck link?

• Q2: how much data is in flight over a single RTT?

• C * T
• ACKs take time T to arrive (total RTT = propagation RTT)
• In the meantime, sender is transmitting at rate C

The Bandwidth-Delay Product
• C * T = bandwidth-delay product (BDP):
• The amount of data in flight for a sender transmitting at the ideal rate during

the ideal round-trip delay of a packet

• Note: this is just the amount of data “on the pipe” at steady state

Data

C * T

What happens if cwnd < C * T?
• i.e., the bottleneck link isn’t kept fully busy
• i.e., the sender is sending even slower than the bottleneck link
• Since window = min(flow control window, congestion window)
• Flow control window must be larger than the BDP to use network effectively

Data

Data in flight < C * T

Not back-to-back on bottleneck!

The Bandwidth-Delay Product
• Q: What happens if cwnd > C * T?
• i.e., where are the rest of the in-flight packets?

• A: Waiting at the bottleneck router queues!

Data

C * T

Packets come out
of the bottleneck
link and queue at
rate C, no faster

Router buffers and the max cwnd
• Router buffer memory is finite: queues can only be so long
• If the router buffer size is B, there is at most B data waiting in the queue

• If cwnd increases beyond C * T + B, data is dropped!

Data

C * T

B

Summary
• Bandwidth-Delay Product (BDP) governs the desired window

size of a single flow at steady state

• If window < BDP, sender is using the network ineffectively
• Corollary: flow control (advertised) window must be BDP or more

• If window > BDP + B, packet drops
• If BDP < window < BDP + B, queueing and increased delays

• The bottleneck router buffer size governs how much the cwnd
can exceed the BDP before packet drops occur

Detecting and Reacting to
Packet Loss

Detecting packet loss
• So far, all the algorithms we’ve studied have a coarse loss

detection mechanism: RTO timer expiration
• Let the RTO expire, drop cwnd all the way to 1 MSS

• Analogy: you’re driving
• Get super close to the car in front (RTO) and then jam the brakes really

hard (set cwnd := 1)
• Q: Can you see the car in front from afar and slow proportionately?

• That is, can the sender see packet loss coming in advance?
• And reduce cwnd gently?

Can we detect loss earlier than RTO?
• Key idea: use the information in the ACKs. How?

• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs
• Occur when network is reordering packets, or a few (but not all) packets in

the window were lost

• Reduce cwnd when you see many duplicate ACKs
• Consider many dup ACKs a strong indication that packet was lost
• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
• Make cwnd reduction gentler than setting cwnd = 1; recover faster

Fast Retransmit & Fast
Recovery
Introduced in TCP New Reno
Used today by all TCP congestion control algorithms!

Distinction: In-flight versus window
• So far, window and in-flight referred to the same data
• Fast retransmit & fast recovery differentiate the two notions

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

cwnd = 6

0 1 2 3 4 5 6 7 10

inflight = 3

Triple duplicate ACKs
(assume subsequent 3 pieces of data

were successfully received)

Sender’s
view:

cwnd is the interval between the last cumulatively
ACK’ed seq# and the last transmitted seq#

inflight is the data currently
believed to be in flight.

TCP fast retransmit (RFC 2581)
• The fact that ACKs are coming means that data is getting delivered

to the receiver, albeit with some loss.
• Note: Before the dup ACKs arrive, we assume inflight = cwnd

• TCP sender does two actions with fast retransmit

TCP fast retransmit (RFC 2581)
• (1) Reduce the cwnd and in-flight gently
• Don’t drop cwnd all the way down to 1 MSS

• Reduce the amount of in-flight data multiplicatively
• Set inflight à inflight / 2
• That is, set cwnd = (inflight / 2) + 3MSS
• This step is called multiplicative decrease
• Algorithm also sets ssthresh to (old)inflight / 2

• Aside: Multiplicative decrease is essential for fairness among TCP
connections.

TCP fast retransmit (RFC 2581)
• Example: Suppose cwnd and inflight (before triple dup ACK)

were both 8 MSS.
• After triple dup ACK, reduce inflight and ssthresh to 4 MSS
• Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS

Last cumulative
ACK’ed seq #

cwnd = inflight = 8

5

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

inflight = 4
cwnd = 7

TCP fast retransmit (RFC 2581)
• (2) The seq# from dup ACKs is immediately retransmitted

• That is, don’t wait for an RTO if there is sufficiently strong evidence
that a packet was lost

TCP fast recovery (RFC 2581)
• Sender keeps the reduced inflight until a new ACK arrives
• New ACK: an ACK for the seq# that was just retransmitted
• May also include the (three or more) pieces of data that were subsequently

delivered to generate the duplicate ACKs

• Conserve packets in flight: transmit some data over lossy periods
(rather than no data, which would happen if cwnd := 1)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 6
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4

5

6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 7
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 8
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Eventually a new ACK arrives, acknowledging the retransmitted

data and all data in between
• Deflate cwnd to half of cwnd before fast retransmit.
• cwnd and inflight are aligned and equal once again

• Perform additive increase from this point! (cwnd = ssthresh)
cwnd = 3
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

New ACK acknowledged this data
Last cumulative

ACK’ed seq #

Additive Increase/Multiplicative Decrease

1K

Time

Triple duplicate ACK

Slow
 sta

rt

In-flight data

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

Switch to additive
increase at cwnd =
ssthresh = 64K

Perceived loss occurs at
cwnd = 80K

(2) Set inflight
= ssthresh = 40K

Additive

increase
Additive

increase

Fast retransmit: (1) retransmit dup-ACKed segment
Fast recovery keeps inflight stable until new ACK

New ACK RTO

RTO: window drops all
the way to 1 MSS

Multiplicative
decrease

TCP New Reno performs additive increase and
multiplicative decrease of its congestion

window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP
algorithms, including BBR.

[It is necessary for fairness across TCP flows.]

Summary: TCP loss detection & reaction

Fast Retransmit
• Triple dup ACK: sufficiently

strong signal that network has
dropped data, before RTO
• Immediately retransmit data
• Multiplicatively decrease in-

flight data to half of its value

Fast Recovery
• Maintain this reduced amount of

in-flight data as long as dup
ACKs arrive
• Data is successfully getting

delivered
• When new ACK arrives, do

additive increase from there on

• Don’t wait for an RTO and then set the cwnd to 1 MSS
• Tantamount to waiting to get super close to the car in front and then

jamming the brakes very hard
• Instead, react proportionately by sensing pkt loss in advance

