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The approach that the Internet takes is to use a distributed 
algorithm to converge to an efficient and fair outcome.
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Getting to a fast ACK clock
The Feedback Loop



An example of a feedback loop

You

Your bathroom shower

Signals:
Water temperature

Water pressure

Knobs:
Turn temperature up/down
Open the tap wider

H C



The congestion control feedback loop

TCP congestion control 
algorithm

Bottleneck link
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ACKs
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Congestion window
• The sender maintains an estimate of the amount of in-flight data 

needed to keep the pipe full without congesting it. 

• This estimate is called the congestion window (cwnd)

• Recall: There is a relationship between the sending rate 
(throughput) and the sender’s window:  sender transmits a 
window’s worth of data over an RTT duration 
• Throughput = sending rate = window / RTT



Interaction Flow & Congestion control
• Use window = min(congestion window, receiver advertised 

window) 
• Overwhelm neither the receiver nor network links & routers
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Finding the Right Congestion 
Window



Let’s play a game
• Suppose I’m thinking of a positive integer. You need to guess 

the number I have in mind.

• Each time you guess, I will tell you whether your number is 
smaller or larger than (or the same as) the one I’m thinking of

• Note that my number can be very large

• How would you go about guessing the number?



Finding the right congestion window
• TCP congestion control algorithms solve a similar problem!

• There is an unknown bottleneck link rate that the sender must 
match

• If sender sends more than the bottleneck link rate:
• packet loss, delays, etc.

• If sender sends less than the bottleneck link rate:
• all packets get through; successful ACKs



Quickly finding a rate: TCP slow start
• Initially cwnd = 1 MSS

• MSS is “maximum segment size”

• Upon receiving an ACK of each MSS, 
increase the cwnd by 1 MSS

• Effectively, double cwnd every RTT

§ Initial rate is slow but ramps up 
exponentially fast

§ On loss (RTO), restart from cwnd := 1 
MSS
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Behavior of slow start
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Slow start has problems
• Congestion window increases too rapidly
• Example: suppose the “right” window size cwnd is 17
• cwnd would go from 16 to 32 and then dropping down to 1
• Result: massive packet drops

• Congestion window decreases too rapidly
• Suppose the right cwnd is 31, and there is a loss when cwnd is 32
• Slow start will resume all the way back from cwnd 1
• Result: unnecessarily low throughput

• Instead, perform finer adjustments of cwnd based on signals



Use slow start mainly at the beginning
• You might accelerate your car a lot when you start, but you want to 

make only small adjustments after.
• Want a smooth ride, not a jerky one!

• Slow start is a good algorithm to get close to the bottleneck link rate 
when there is little info available about the bottleneck, e.g., starting of 
a connection

• Once close enough to the bottleneck link rate, use a different set of 
strategies to perform smaller adjustments to cwnd
• Called TCP congestion avoidance



TCP Congestion Avoidance



Two congestion control algorithms
TCP New Reno
• The most studied, classic 

“textbook” TCP algorithm

• The primary knob is congestion 
window

• The primary signal is packet 
loss (RTO)

• Adjustment using additive 
increase

TCP BBR
• Recent algorithm developed & 

deployed by Google

• The primary knob is sending rate

• The primary signal is rate of 
incoming ACKs

• Adjustment using gain cycling 
and filters



TCP New Reno: Additive Increase
• Remember the recent past to find a 

good estimate of link rate
• The last good cwnd without packet 

drop is a good indicator
• TCP New Reno calls this the slow start 

threshold (ssthresh)

• Increase cwnd by 1 MSS every RTT 
after cwnd hits ssthresh
• Effect: increase window additively per 

RTT

Host A

R
TT

Host B

time

four segments

five segments

six segments

R
TT

say ssthresh=4

seven segments…

R
TT



TCP New Reno: Additive increase
• Start with ssthresh = 64K bytes (TCP default)
• Do slow start until ssthresh
• Once the threshold is passed, do additive increase
• Add one MSS to cwnd for each cwnd worth data ACK’ed
• For each MSS ACK’ed, cwnd = cwnd + (MSS * MSS) / cwnd

• Upon a TCP timeout (RTO),
• Set cwnd = 1 MSS
• Set ssthresh = max(2 * MSS, 0.5 * cwnd)
• i.e., the next linear increase will start at half the current cwnd



Behavior of Additive Increase
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TCP BBR: finding the bottleneck link rate

Sender Receiver
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packet

3. Send ACK4. Measure rate 
of incoming 
ACKs

Data

ACKs

Use ACK receive 
rate to determine 
sending rate



TCP BBR: finding the bottleneck link rate
• Assuming that the link rate of the bottleneck
• == the rate of data getting across the bottleneck link
• == the rate of data getting to the receiver
• == the rate at which ACKs are generated by the receiver
• == the rate at which ACKs reach the sender

• Measuring ACK rate provides an estimate of bottleneck link rate

• BBR: Send at the maximum ACK rate measured in the recent past
• Update max with new bottleneck rate estimates, i.e., larger ACK rate 
• Forget estimates last measured a long time ago
• Incorporated into a rate filter



TCP BBR: Adjustments by gain cycling
• BBR periodically increases its sending rate by a gain factor to 

see if the link rate has increased (e.g., due to a path change)
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Summary: Getting to Steady State
• Want to get to highest sending rate that doesn’t congest the 

bottleneck link

• Slow start: Exponential increase towards a reasonable estimate 
of link rate

• Congestion avoidance: milder adjustments to get close to 
correct link rate estimate.
• TCP New Reno: additive increase
• TCP BBR: gain cycling and filters



Bandwidth-Delay Product



Goal of steady state operation
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Send packet 
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Steady state cwnd for a single flow
• Suppose the bottleneck link has rate C
• Suppose the propagation round-trip delay (propRTT) between 

sender and receiver is T
• Ignore transmission delays for this example; 
• Assume steady state: highest sending rate with no bottleneck 

congestion

• Q: how much data is in flight over a single RTT?

• C * T data i.e., amount of data unACKed at any point in time
• ACKs take time T to arrive (without any queueing). In the 

meantime, sender is transmitting at rate C



The Bandwidth-Delay Product
• C * T = bandwidth-delay product: 
• The amount of data in flight for a sender transmitting at the ideal rate during 

the ideal round-trip delay of a packet

• Note: this is just the amount of data “on the pipe”

Data

C * T 



The Bandwidth-Delay Product
• Q: What happens if cwnd > C * T?
• i.e., where are the rest of the in-flight packets?

• A: Waiting at the bottleneck router queues

Data

C * T 



Router buffers and the max cwnd
• Router buffer memory is finite: queues can only be so long
• If the router buffer size is B, there is at most B data waiting in the queue

• If cwnd increases beyond C * T + B, data is dropped!

Data

C * T 

B



Summary
• Bandwidth-Delay Product (BDP) governs the window size of a 

single flow at steady state

• The bottleneck router buffer size governs how much the cwnd
can exceed the BDP before packet drops occur



Detecting and Reacting to 
Packet Loss



Detecting packet loss
• So far, all the algorithms we’ve studied have a coarse loss 

detection mechanism: RTO timer expiration
• Let the RTO expire, drop cwnd all the way to 1 MSS

• Analogy: you’re driving a car
• You’re waiting until the next car in front is super close to you (RTO) and 

then hitting the brakes really hard (set cwnd := 1)
• Q: Can you see obstacles from afar and slow down proportionately?

• That is, can the sender see packet loss coming in advance?
• And reduce cwnd more gently?



Can we detect loss earlier than RTO?
• Key idea: use the information in the ACKs. How?

• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs
• Occur when network is reordering packets, or one (but not most) packets 

in the window were lost

• Reduce cwnd when you see many duplicate ACKs
• Consider many dup ACKs a strong indication that packet was lost
• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
• Make cwnd reduction gentler than setting cwnd = 1; recover faster



Fast Retransmit & Fast 
Recovery



Distinction: In-flight versus window
• So far, window and in-flight referred to the same data  
• Fast retransmit & fast recovery differentiate the two notions
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inflight is the data currently 
believed to be in flight.



TCP fast retransmit (RFC 2581)
• The fact that ACKs are coming means that data is getting delivered 

to the receiver, albeit with some loss.
• Note: Before the dup ACKs arrive, we assume inflight = cwnd

• TCP sender does two actions with fast retransmit



TCP fast retransmit (RFC 2581)
• (1) Reduce the cwnd and in-flight gently
• Don’t drop cwnd all the way down to 1 MSS

• Reduce the amount of in-flight data multiplicatively
• Set inflight à inflight / 2
• That is, set cwnd = (inflight / 2) + 3MSS
• This step is called multiplicative decrease
• Algorithm also sets ssthresh to inflight / 2



TCP fast retransmit (RFC 2581)
• Example: Suppose cwnd and inflight (before triple dup 

ACK) were both 8 MSS. 
• After triple dup ACK, reduce inflight to 4 MSS
• Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS

Last cumulative 
ACK’ed seq #

cwnd = inflight = 8

5

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in 
flight (dup ACK)

inflight = 4
cwnd = 7



TCP fast retransmit (RFC 2581)
• (2) The seq# from dup ACKs is immediately retransmitted

• That is, don’t wait for an RTO if there is sufficiently strong evidence 
that a packet was lost



TCP fast recovery (RFC 2581)
• Sender keeps the reduced inflight until a new ACK arrives
• New ACK: an ACK for the seq# that was just retransmitted
• May also include the (three or more) pieces of data that were subsequently 

delivered to generate the duplicate ACKs

• Conserve packets in flight: transmit some data over lossy periods 
(rather than no data, which would happen if cwnd := 1)



TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK
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TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK
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ACK’ed seq #
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TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative 
ACK’ed seq #

cwnd = 8
inflight = 3
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Assumed not in 
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TCP fast recovery (RFC 2581)
• Eventually a new ACK arrives, acknowledging the retransmitted 

data and all data in between
• Deflate cwnd to half of cwnd before fast retransmit.
• cwnd and inflight are aligned and equal once again

• Perform additive increase from this point!
cwnd = 3
inflight = 3
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Additive Increase/Multiplicative Decrease
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TCP New Reno performs additive increase and 
multiplicative decrease of its congestion 

window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP 
algorithms, including BBR.

[It is necessary for fairness across TCP flows.]



Summary: TCP loss detection & reaction

Fast Retransmit
• Triple dup ACK: sufficiently 

strong signal that network has 
dropped data, before RTO
• Immediately retransmit data
• Multiplicatively decrease in-

flight data to half of its value

Fast Recovery
• Maintain this reduced amount of 

in-flight data as long as dup 
ACKs arrive
• Data is successfully getting 

delivered
• When new ACK arrives, do 

additive increase from there on

• Don’t wait for an RTO and then set the cwnd to 1 MSS
• Tantamount to waiting to get super close to the car in front and then 

jamming the brakes really hard
• Instead, react proportionately by sensing pkt loss in advance


