
Congestion Control
(Part 2)

Lecture 16
http://www.cs.rutgers.edu/~sn624/352-S22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S22

application
process

TCP socket
receiver buffers

TCP
code

receiver

from sender

recv()

sender Multiple locations
for bottlenecks

What’s the
bottleneck? How
to adapt how
much data to
keep in flight?

Fl
ow

 C
on

tro
l

Congestion Control

Flow Control: Receiver informs
sender free buffer over time

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Window <= Advertised window

Sender’s
view:

The approach that the Internet takes is to use a distributed
algorithm to converge to an efficient and fair outcome.

Sender Receiver

1. Send packet
burst (as allowed
by window)

Fast link Bottleneck link
Inter-packet delay T

T

T
T

T

2. Receive data
packet

3. Send ACK4. Receive ACK

Data

ACKs

5. Send data
ACK clocking

Getting to a fast ACK clock
The Feedback Loop

An example of a feedback loop

You

Your bathroom shower

Signals:
Water temperature

Water pressure

Knobs:
Turn temperature up/down
Open the tap wider

H C

The congestion control feedback loop

TCP congestion control
algorithm

Bottleneck link

Signals:
ACKs

Loss (RTOs), etc.

Knobs:
Sending rate
Congestion window

Congestion window
• The sender maintains an estimate of the amount of in-flight data

needed to keep the pipe full without congesting it.

• This estimate is called the congestion window (cwnd)

• Recall: There is a relationship between the sending rate
(throughput) and the sender’s window: sender transmits a
window’s worth of data over an RTT duration
• Throughput = sending rate = window / RTT

Interaction Flow & Congestion control
• Use window = min(congestion window, receiver advertised

window)
• Overwhelm neither the receiver nor network links & routers

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Sender’s
view:

Window <= Congestion window (congestion control)
Window <= Advertised window (flow control)

Finding the Right Congestion
Window

Let’s play a game
• Suppose I’m thinking of a positive integer. You need to guess

the number I have in mind.

• Each time you guess, I will tell you whether your number is
smaller or larger than (or the same as) the one I’m thinking of

• Note that my number can be very large

• How would you go about guessing the number?

Finding the right congestion window
• TCP congestion control algorithms solve a similar problem!

• There is an unknown bottleneck link rate that the sender must
match

• If sender sends more than the bottleneck link rate:
• packet loss, delays, etc.

• If sender sends less than the bottleneck link rate:
• all packets get through; successful ACKs

Quickly finding a rate: TCP slow start
• Initially cwnd = 1 MSS

• MSS is “maximum segment size”

• Upon receiving an ACK of each MSS,
increase the cwnd by 1 MSS

• Effectively, double cwnd every RTT

§ Initial rate is slow but ramps up
exponentially fast

§ On loss (RTO), restart from cwnd := 1
MSS

Host A

one segment

R
TT

Host B

time

two segments

four segments

Behavior of slow start

1 MSS

Congestion
Window

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt

Slow
 sta

rt

Slow start has problems
• Congestion window increases too rapidly
• Example: suppose the “right” window size cwnd is 17
• cwnd would go from 16 to 32 and then dropping down to 1
• Result: massive packet drops

• Congestion window decreases too rapidly
• Suppose the right cwnd is 31, and there is a loss when cwnd is 32
• Slow start will resume all the way back from cwnd 1
• Result: unnecessarily low throughput

• Instead, perform finer adjustments of cwnd based on signals

Use slow start mainly at the beginning
• You might accelerate your car a lot when you start, but you want to

make only small adjustments after.
• Want a smooth ride, not a jerky one!

• Slow start is a good algorithm to get close to the bottleneck link rate
when there is little info available about the bottleneck, e.g., starting of
a connection

• Once close enough to the bottleneck link rate, use a different set of
strategies to perform smaller adjustments to cwnd
• Called TCP congestion avoidance

TCP Congestion Avoidance

Two congestion control algorithms
TCP New Reno
• The most studied, classic

“textbook” TCP algorithm

• The primary knob is congestion
window

• The primary signal is packet
loss (RTO)

• Adjustment using additive
increase

TCP BBR
• Recent algorithm developed &

deployed by Google

• The primary knob is sending rate

• The primary signal is rate of
incoming ACKs

• Adjustment using gain cycling
and filters

TCP New Reno: Additive Increase
• Remember the recent past to find a

good estimate of link rate
• The last good cwnd without packet

drop is a good indicator
• TCP New Reno calls this the slow start

threshold (ssthresh)

• Increase cwnd by 1 MSS every RTT
after cwnd hits ssthresh
• Effect: increase window additively per

RTT

Host A

R
TT

Host B

time

four segments

five segments

six segments

R
TT

say ssthresh=4

seven segments…

R
TT

TCP New Reno: Additive increase
• Start with ssthresh = 64K bytes (TCP default)
• Do slow start until ssthresh
• Once the threshold is passed, do additive increase
• Add one MSS to cwnd for each cwnd worth data ACK’ed
• For each MSS ACK’ed, cwnd = cwnd + (MSS * MSS) / cwnd

• Upon a TCP timeout (RTO),
• Set cwnd = 1 MSS
• Set ssthresh = max(2 * MSS, 0.5 * cwnd)
• i.e., the next linear increase will start at half the current cwnd

Behavior of Additive Increase

1K

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt
Congestion

Window

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

54 MSS

Set ssthresh to
27 MSS

Loss occurs at
cwnd = 40K

Loss occurs at
cwnd = 54K

Set ssthresh to
20 MSS

Additive

increase

Slow

sta
rt

Additive

increase

TCP BBR: finding the bottleneck link rate

Sender Receiver

1. Send data at a
specific rate Data gets across the bottleneck

at the bottleneck link rate.
2. Receive data
packet

3. Send ACK4. Measure rate
of incoming
ACKs

Data

ACKs

Use ACK receive
rate to determine
sending rate

TCP BBR: finding the bottleneck link rate
• Assuming that the link rate of the bottleneck
• == the rate of data getting across the bottleneck link
• == the rate of data getting to the receiver
• == the rate at which ACKs are generated by the receiver
• == the rate at which ACKs reach the sender

• Measuring ACK rate provides an estimate of bottleneck link rate

• BBR: Send at the maximum ACK rate measured in the recent past
• Update max with new bottleneck rate estimates, i.e., larger ACK rate
• Forget estimates last measured a long time ago
• Incorporated into a rate filter

TCP BBR: Adjustments by gain cycling
• BBR periodically increases its sending rate by a gain factor to

see if the link rate has increased (e.g., due to a path change)

…

Time

Se
nd

in
g

ra
te

Steady state operation:
constant sending rate

Gain cycle

Detect higher ACK rate:
Update sending rate

Last max ACK rate was
measured a while ago.
Forget it & use a more
recent max ACK rate

…
No change
in ACK rate

Bottleneck link
rate increase

Bottleneck link
rate decrease

Summary: Getting to Steady State
• Want to get to highest sending rate that doesn’t congest the

bottleneck link

• Slow start: Exponential increase towards a reasonable estimate
of link rate

• Congestion avoidance: milder adjustments to get close to
correct link rate estimate.
• TCP New Reno: additive increase
• TCP BBR: gain cycling and filters

Bandwidth-Delay Product

Goal of steady state operation

Sender Receiver

Send packet
burst (as allowed
by window) Receive data

packet

Send ACKReceive ACK

Data

ACKs

(1) Keep transmissions
ACK-clocked: Send new
data on ACK

(2) Keep transmissions over the
bottleneck link back to back

Steady state cwnd for a single flow
• Suppose the bottleneck link has rate C
• Suppose the propagation round-trip delay (propRTT) between

sender and receiver is T
• Ignore transmission delays for this example;
• Assume steady state: highest sending rate with no bottleneck

congestion

• Q: how much data is in flight over a single RTT?

• C * T data i.e., amount of data unACKed at any point in time
• ACKs take time T to arrive (without any queueing). In the

meantime, sender is transmitting at rate C

The Bandwidth-Delay Product
• C * T = bandwidth-delay product:
• The amount of data in flight for a sender transmitting at the ideal rate during

the ideal round-trip delay of a packet

• Note: this is just the amount of data “on the pipe”

Data

C * T

The Bandwidth-Delay Product
• Q: What happens if cwnd > C * T?
• i.e., where are the rest of the in-flight packets?

• A: Waiting at the bottleneck router queues

Data

C * T

Router buffers and the max cwnd
• Router buffer memory is finite: queues can only be so long
• If the router buffer size is B, there is at most B data waiting in the queue

• If cwnd increases beyond C * T + B, data is dropped!

Data

C * T

B

Summary
• Bandwidth-Delay Product (BDP) governs the window size of a

single flow at steady state

• The bottleneck router buffer size governs how much the cwnd
can exceed the BDP before packet drops occur

Detecting and Reacting to
Packet Loss

Detecting packet loss
• So far, all the algorithms we’ve studied have a coarse loss

detection mechanism: RTO timer expiration
• Let the RTO expire, drop cwnd all the way to 1 MSS

• Analogy: you’re driving a car
• You’re waiting until the next car in front is super close to you (RTO) and

then hitting the brakes really hard (set cwnd := 1)
• Q: Can you see obstacles from afar and slow down proportionately?

• That is, can the sender see packet loss coming in advance?
• And reduce cwnd more gently?

Can we detect loss earlier than RTO?
• Key idea: use the information in the ACKs. How?

• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs
• Occur when network is reordering packets, or one (but not most) packets

in the window were lost

• Reduce cwnd when you see many duplicate ACKs
• Consider many dup ACKs a strong indication that packet was lost
• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
• Make cwnd reduction gentler than setting cwnd = 1; recover faster

Fast Retransmit & Fast
Recovery

Distinction: In-flight versus window
• So far, window and in-flight referred to the same data
• Fast retransmit & fast recovery differentiate the two notions

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

cwnd = 6

0 1 2 3 4 5 6 7 10

inflight = 3

Triple duplicate ACKs
(assume subsequent 3 pieces of data

were successfully received)

Sender’s
view:

cwnd is the interval between the last cumulatively
ACK’ed seq# and the last transmitted seq#

inflight is the data currently
believed to be in flight.

TCP fast retransmit (RFC 2581)
• The fact that ACKs are coming means that data is getting delivered

to the receiver, albeit with some loss.
• Note: Before the dup ACKs arrive, we assume inflight = cwnd

• TCP sender does two actions with fast retransmit

TCP fast retransmit (RFC 2581)
• (1) Reduce the cwnd and in-flight gently
• Don’t drop cwnd all the way down to 1 MSS

• Reduce the amount of in-flight data multiplicatively
• Set inflight à inflight / 2
• That is, set cwnd = (inflight / 2) + 3MSS
• This step is called multiplicative decrease
• Algorithm also sets ssthresh to inflight / 2

TCP fast retransmit (RFC 2581)
• Example: Suppose cwnd and inflight (before triple dup

ACK) were both 8 MSS.
• After triple dup ACK, reduce inflight to 4 MSS
• Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS

Last cumulative
ACK’ed seq #

cwnd = inflight = 8

5

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

inflight = 4
cwnd = 7

TCP fast retransmit (RFC 2581)
• (2) The seq# from dup ACKs is immediately retransmitted

• That is, don’t wait for an RTO if there is sufficiently strong evidence
that a packet was lost

TCP fast recovery (RFC 2581)
• Sender keeps the reduced inflight until a new ACK arrives
• New ACK: an ACK for the seq# that was just retransmitted
• May also include the (three or more) pieces of data that were subsequently

delivered to generate the duplicate ACKs

• Conserve packets in flight: transmit some data over lossy periods
(rather than no data, which would happen if cwnd := 1)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 6
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4

5

6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 7
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 8
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Eventually a new ACK arrives, acknowledging the retransmitted

data and all data in between
• Deflate cwnd to half of cwnd before fast retransmit.
• cwnd and inflight are aligned and equal once again

• Perform additive increase from this point!
cwnd = 3
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

New ACK acknowledged this data
Last cumulative

ACK’ed seq #

Additive Increase/Multiplicative Decrease

1K

Time

Triple duplicate ACK

Slow
 sta

rt

In-flight data

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

Switch to additive
increase at cwnd =
ssthresh = 64K

Perceived loss occurs at
cwnd = 80K

(2) Set inflight
= ssthresh = 40K

Additive

increase
Additive

increase

Fast retransmit: (1) retransmit dup-ACKed segment
Fast recovery keeps inflight stable until new ACK

New ACK RTO

RTO: window drops all
the way to 1 MSS

Multiplicative
decrease

TCP New Reno performs additive increase and
multiplicative decrease of its congestion

window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP
algorithms, including BBR.

[It is necessary for fairness across TCP flows.]

Summary: TCP loss detection & reaction

Fast Retransmit
• Triple dup ACK: sufficiently

strong signal that network has
dropped data, before RTO
• Immediately retransmit data
• Multiplicatively decrease in-

flight data to half of its value

Fast Recovery
• Maintain this reduced amount of

in-flight data as long as dup
ACKs arrive
• Data is successfully getting

delivered
• When new ACK arrives, do

additive increase from there on

• Don’t wait for an RTO and then set the cwnd to 1 MSS
• Tantamount to waiting to get super close to the car in front and then

jamming the brakes really hard
• Instead, react proportionately by sensing pkt loss in advance

