
Congestion Control
Lecture 15

http://www.cs.rutgers.edu/~sn624/352-S22
Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S22

Quick recap of concepts

Tp layer

TCP:
Reliability
Ordering

Reordering degrades connection
throughput. Apps can’t recv().
Packets may even be dropped due to
insufficient buffering.

Packet boundaries recv()

Sequence numbers

Stream-Oriented Transport
How much data to
keep in flight?

SEQ 0

RTT

SEQ 1SEQ 2SEQ 3

ACK 1

ACK 2

ACK 3

ACK 4

application
process

TCP socket
receiver buffers

TCP
code

receiver

from sender

recv()

sender Multiple locations
for bottlenecks

What’s the
bottleneck? How
to adapt how
much data to
keep in flight?

Fl
ow

 C
on

tro
l

Congestion Control

Flow Control: Receiver informs
sender free buffer over time

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Window <= Advertised window

Sender’s
view:

Buffer >= desired W

Low socket buffering
==

Poor TCP throughput

Congestion

Amount of
useful data

that gets
across to

the receiver

Fraction of link used (link load)

~100%

Queueing
delay

Link load

~100%

Packets get dropped
beyond max buffer

Max amount of useful data that
link can support, ~ link rate

Too many
retransmissions due
to packet drops!
Amount of useful
(fresh) data
plummets.
Congestion collapse

∞

Routers have
buffers which
accommodate
queued packets.

https://en.wikipedia.org/wiki/Network_congestion#Congestive_collapse

How should multiple endpoints share net?

• It is difficult to know where the bottleneck link is
• It is difficult to know how many other endpoints are using that link
• Endpoints may join and leave at any time
• Network paths may change over time, leading to different bottleneck

links (with different link rates) over time

The approach that the Internet takes is to use a
distributed algorithm to converge to an efficient and
fair outcome.

The approach that the Internet takes is to use a
distributed algorithm to converge to an efficient and
fair outcome.

No one can centrally view or control all the endpoints and
bottlenecks in the Internet.

Every endpoint must try to reach a globally good outcome by
itself: i.e., in a distributed fashion.

This also puts a lot of trust in endpoints.

The approach that the Internet takes is to use a
distributed algorithm to converge to an efficient and
fair outcome.

If there is spare capacity in the bottleneck link, the endpoints should use it.

The approach that the Internet takes is to use a
distributed algorithm to converge to an efficient and
fair outcome.

If there are N endpoints sharing a bottleneck link, they should
be able to get equitable shares of the link’s capacity.

For example: 1/N’th of the link capacity.

Flow Control vs. Congestion Control
• Avoid overwhelming the

receiving application

• Sender is managing the
receiver’s socket buffer

• Avoid overwhelming the
bottleneck network link

• Sender is managing the
bottleneck link capacity and
bottleneck router buffers

The approach that the Internet takes is to use a
distributed algorithm to converge to an efficient and
fair outcome.

How to achieve this?

Approach: sense and react
Example: taking a shower
Use a feedback loop with signals and knobs

H C

Signals and Knobs in Congestion Control
• Signals
• Packets being ACK’ed
• Packets being dropped (e.g. RTO fires)
• Packets being delayed (RTT)
• Rate of incoming ACKs

• Knobs
• What can you change to “probe” the available bottleneck capacity?
• Suppose receiver buffer is unbounded:
• Increase window/sending rate: e.g., add x or multiply by a factor of x
• Decrease window/sending rate: e.g., subtract x or reduce by a factor of x

Implicit feedback signals
measured directly at sender.
(There are also explicit signals
that the network might provide.)

Sense and react, sure…but how?
• Where do you want to be?
• The steady state

• How do you get there?
• Congestion control algorithms

• Sense accurately
• React proportionately

H C

The Steady State
Efficiency of a single TCP conversation

What does efficiency look like?
• Suppose we want to achieve an efficient outcome for one TCP

conversation by observing network signals from the endpoint

• Q: How should the endpoint behave at steady state?
• Challenge: bottleneck link is remotely located

Steady state: Ideal goal
• High sending rate: Use the full capacity of the bottleneck link
• Low delay: Minimize the overall delay of packets to get to the

receiver
• Overall delay = propagation + queueing + transmission
• Assume propagation and transmission components fixed

• “Low delay” reduces to low queueing delay
• i.e., don’t push so much data into the network that packets have to

wait in queues

• Key question: When to send the next packet?

When to send the next packet?

Sender Receiver

1. Send packet
burst (as allowed
by window)

Fast link Bottleneck link
Inter-packet delay T

T

T
T

T

2. Receive data
packet

3. Send ACK4. Receive ACK

Data

ACKs

5. Send data
packet on ACK

Rationale
• When the sender receives an ACK, that’s a signal that the previous

packet has left the bottleneck link (and the rest of the network)

• Hence, it must be safe to send another packet without congesting the
bottleneck link

• Such transmissions are said to follow packet conservation

• ACK clocking: “Clock” of ACKs governs packet transmissions

ACK clocking: analogy
• How to avoid crowding a grocery

store?

• Strategy: Send the next waiting
customer exactly when a customer
exits the store

• However, this strategy alone can
lead to inefficient use of resources…

ACK clocking alone can be inefficient

Sender Receiver

Large delay T
T

Data

ACKs

Send data
packet on ACK

T
T

T

Sender pushing
data slowly

ACK clocking alone can be inefficient

Sender Receiver

T

Data

The sending rate should be high enough to keep the “pipe” full
Analogy: a grocery store with only 1 customer in entire store
If the store isn’t “full”, you’re using store space inefficiently

Large delay T

Send data
packet on ACK

Sender pushing
data slowly

Steady State of Congestion Control
• Send at the highest rate possible (to keep the pipe full)
• while being ACK-clocked (to avoid congesting the pipe)

• So, how to get to steady state?

Getting to Steady State
The Feedback Loop

An example of a feedback loop

You

Your bathroom shower

Signals:
Water temperature

Water pressure

Knobs:
Turn temperature up/down
Open the tap wider

H C

The congestion control feedback loop

TCP congestion control
algorithm

Bottleneck link

Signals:
ACKs

Loss (RTOs), etc.

Knobs:
Sending rate
Congestion window

Congestion window
• The sender maintains an estimate of the amount of in-flight data

needed to keep the pipe full without congesting it.

• This estimate is called the congestion window (cwnd)

• Recall: There is a relationship between the sending rate
(throughput) and the sender’s window: sender transmits a
window’s worth of data over an RTT duration
• Rate = window / RTT

Interaction b/w flow & congestion control
• Use window = min(congestion window, receiver advertised

window)
• Overwhelm neither the receiver nor network links & routers

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Sender’s
view:

Window <= Congestion window (congestion control)
Window <= Advertised window (flow control)

