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Quick recap of concepts

Tp layer

TCP:
Reliability
Ordering

Reordering degrades connection 
throughput. Apps can’t recv().
Packets may even be dropped due to 
insufficient buffering.

Packet boundaries recv()

Sequence numbers

Stream-Oriented Transport
How much data to 
keep in flight?

SEQ 0

RTT

SEQ 1SEQ 2SEQ 3

ACK 1

ACK 2

ACK 3

ACK 4



application
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TCP socket
receiver buffers

TCP
code

receiver

from sender

recv()

sender Multiple locations 
for bottlenecks

What’s the 
bottleneck? How 
to adapt how 
much data to 
keep in flight?
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Congestion Control

Flow Control: Receiver informs 
sender free buffer over time
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Sender’s 
view:
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Poor TCP throughput



Congestion

Amount of 
useful data 

that gets 
across to 

the receiver

Fraction of link used (link load)

~100%

Queueing 
delay

Link load

~100%

Packets get dropped 
beyond max buffer

Max amount of useful data that 
link can support, ~ link rate

Too many 
retransmissions due 
to packet drops! 
Amount of useful 
(fresh) data 
plummets.
Congestion collapse

∞

Routers have 
buffers which 
accommodate 
queued packets.

https://en.wikipedia.org/wiki/Network_congestion#Congestive_collapse



How should multiple endpoints share net?

• It is difficult to know where the bottleneck link is
• It is difficult to know how many other endpoints are using that link
• Endpoints may join and leave at any time
• Network paths may change over time, leading to different bottleneck 

links (with different link rates) over time 



The approach that the Internet takes is to use a 
distributed algorithm to converge to an efficient and 
fair outcome.



The approach that the Internet takes is to use a 
distributed algorithm to converge to an efficient and 
fair outcome.

No one can centrally view or control all the endpoints and 
bottlenecks in the Internet. 

Every endpoint must try to reach a globally good outcome by 
itself: i.e., in a distributed fashion.

This also puts a lot of trust in endpoints.



The approach that the Internet takes is to use a 
distributed algorithm to converge to an efficient and 
fair outcome.

If there is spare capacity in the bottleneck link, the endpoints should use it.



The approach that the Internet takes is to use a 
distributed algorithm to converge to an efficient and 
fair outcome.

If there are N endpoints sharing a bottleneck link, they should 
be able to get equitable shares of the link’s capacity.

For example: 1/N’th of the link capacity.



Flow Control     vs.     Congestion Control
• Avoid overwhelming the 

receiving application

• Sender is managing the 
receiver’s socket buffer

• Avoid overwhelming the 
bottleneck network link

• Sender is managing the 
bottleneck link capacity and 
bottleneck router buffers



The approach that the Internet takes is to use a 
distributed algorithm to converge to an efficient and 
fair outcome.

How to achieve this?

Approach: sense and react
Example: taking a shower
Use a feedback loop with signals and knobs
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Signals and Knobs in Congestion Control
• Signals
• Packets being ACK’ed
• Packets being dropped (e.g. RTO fires)
• Packets being delayed (RTT)
• Rate of incoming ACKs

• Knobs
• What can you change to “probe” the available bottleneck capacity?
• Suppose receiver buffer is unbounded:
• Increase window/sending rate: e.g., add x or multiply by a factor of x
• Decrease window/sending rate: e.g., subtract x or reduce by a factor of x

Implicit feedback signals 
measured directly at sender.
(There are also explicit signals 
that the network might provide.)



Sense and react, sure…but how?
• Where do you want to be?
• The steady state

• How do you get there?
• Congestion control algorithms

• Sense accurately
• React proportionately

H C



The Steady State
Efficiency of a single TCP conversation



What does efficiency look like?
• Suppose we want to achieve an efficient outcome for one TCP 

conversation by observing network signals from the endpoint

• Q: How should the endpoint behave at steady state?
• Challenge: bottleneck link is remotely located



Steady state: Ideal goal
• High sending rate: Use the full capacity of the bottleneck link
• Low delay: Minimize the overall delay of packets to get to the 

receiver
• Overall delay = propagation + queueing + transmission
• Assume propagation and transmission components fixed

• “Low delay” reduces to low queueing delay
• i.e., don’t push so much data into the network that packets have to 

wait in queues

• Key question: When to send the next packet?



When to send the next packet?

Sender Receiver

1. Send packet 
burst (as allowed 
by window)

Fast link Bottleneck link
Inter-packet delay T

T

T
T

T

2. Receive data 
packet

3. Send ACK4. Receive ACK

Data

ACKs

5. Send data  
packet on ACK



Rationale
• When the sender receives an ACK, that’s a signal that the previous 

packet has left the bottleneck link (and the rest of the network)

• Hence, it must be safe to send another packet without congesting the 
bottleneck link

• Such transmissions are said to follow packet conservation

• ACK clocking: “Clock” of ACKs governs packet transmissions



ACK clocking: analogy
• How to avoid crowding a grocery 

store?

• Strategy: Send the next waiting 
customer exactly when a customer 
exits the store

• However, this strategy alone can 
lead to inefficient use of resources…



ACK clocking alone can be inefficient

Sender Receiver

Large delay T
T

Data

ACKs

Send data  
packet on ACK

T
T

T

Sender pushing 
data slowly



ACK clocking alone can be inefficient

Sender Receiver

T

Data

The sending rate should be high enough to keep the “pipe” full
Analogy: a grocery store with only 1 customer in entire store
If the store isn’t “full”, you’re using store space inefficiently

Large delay T

Send data  
packet on ACK

Sender pushing 
data slowly



Steady State of Congestion Control
• Send at the highest rate possible (to keep the pipe full) 
• while being ACK-clocked (to avoid congesting the pipe)

• So, how to get to steady state? 



Getting to Steady State
The Feedback Loop



An example of a feedback loop

You

Your bathroom shower

Signals:
Water temperature

Water pressure

Knobs:
Turn temperature up/down
Open the tap wider
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The congestion control feedback loop

TCP congestion control 
algorithm

Bottleneck link

Signals:
ACKs

Loss (RTOs), etc.

Knobs:
Sending rate
Congestion window



Congestion window
• The sender maintains an estimate of the amount of in-flight data 

needed to keep the pipe full without congesting it. 

• This estimate is called the congestion window (cwnd)

• Recall: There is a relationship between the sending rate 
(throughput) and the sender’s window:  sender transmits a 
window’s worth of data over an RTT duration 
• Rate = window / RTT



Interaction b/w flow & congestion control
• Use window = min(congestion window, receiver advertised 

window) 
• Overwhelm neither the receiver nor network links & routers
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