Flow Control

Lecture 14
http://www.cs.rutgers.edu/~sn624/352-S22

Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-S22

Selective repeat

Quick recap of concepts
— —

/ TC P , Cumulative ACK Selective ACK
-~ A Connection-oriented ACK X ACK x

4 SACK x1-x2,x3-x4,x5-x6
g - application S Precision of info:
process I < '
. ”' N () O
recv() = Retransmissions <
0 1 2 3 / © > g
0123456789012345678901234567890]1 TCP socket E "6
S S S S T O O S T ST S S S S S S MY S S . H
| Source Port Destination Port | receilver bUfferS = CompleXIty, bu981 e 9
ottt et bbbt =t e S v ST S ST S S S R RN 7\ O < D
| Sequence Number | | wn
S : - e S
-!--+-+-+-+-+-+ _+_+zji]fﬁffi'ifirfifi_f‘_lTk_)if_,__ +-+-+-+-+-+-+-+--!- TCP O rd e rl n g Ap p
| Data | - |
| offset| Reserved |R|C|S|S|Y|I]| Window |
| | lGIx|u|T x| | code Reassembly NG srecv()
S T SUT S S S S ST S S S S S
| Checksum | Urgent Pointer | \
S S S S T S S S ST S S S S S S MUY S S
| options | raading | |from sender
ST S S S T S S Y S S S T ST T S S S S AT ST ST S S
data
+|-—+—+—+-+-+—+-+—+—+—+—+—+—+—+-+-:-+—+—+—+—+—+—+—+—+-+-+-+—+—+—+—+|-

c———

TCP Header Format

Note that one tick mark represents one bit position.

receiver TCP interaction Data with sequence # <=/

Implications of ordered delivery

« Packets cannot be delivered to the application if there is an in-
order packet missing from the receiver’s buffer
* The receiver can only buffer so much out-of-order data
« Subsequent out-of-order packets dropped

* [t won’t matter that those packets successfully arrive at the receiver
from the sender over the network

« TCP application-level throughput will suffer if there is too much
packet reordering in the network

« Data may have reached the receiver but won’t be delivered to apps
upon a recv() (...or may not even be buffered!)

Stream-Oriented Data
Transfer

Sequence numbers in the app’s stream

Data written by application over time
e.g., send() call

100 150 180 240 273
packet packet packet | packet packet

Increasing sequence #s

TCP uses byte sequence numbers

Sequence numbers in the app’s stream

Data written by application over time
e.g., send() call

100 150 180 240 273
packet packet packet | packet packet

Increasing sequence #s

Packet boundaries aren’t important for TCP software

TCP is a stream-oriented protocol
(We use SOCK_STREAM when creating sockets)

Sequence numbers in the app’s stream

Data written by application over time
e.g., send() call

2nd
recv()| recv()

A recv() call may
return a part of a
packet, a full packet,

or multiple packets
App does a recv() together.

= window size Proportional to throughput

How much data to keep In

flight? \ { S

Stop and Wait >4

SEQO —] \(\’\
= %

T o

3 <

_I

Ack)

SEQ 1

RO, Pipelined Reliability

We want to increase throughput, but ...

>

What'’s the
bottleneck? How
to adapt how
much data to
keep in flight?

\
g sender U

Multiple locations
for bottlenecks

\ \

'\
X / \)

Congestion

> Control

E -

application’”
process v

TCP socket
receiver buffersf’

|

from sender

Flow Control

Flow Control

Socket buffers can become full

* Applications may read data slower than
the sender is pushing data in

« Example: what if an app infrequently or
never calls recv()?

* There may be too much reordering or
packet loss in the network

« What if the first few bytes of a window are
lost or delayed?

* Receivers can only buffer so much
before dropping subsequent data

application
process

y
r

TCP socket
receiver buffers

|

from sender %
|
|
|

TCP receiver

Goal: avoid drops due to buffer fill

« Have a TCP sender only send as much
as the free buffer space available at the
receiver.

* Amount of free buffer varies over time!
« TCP implements flow control

* Receiver’s ACK contains the amount of
data the sender can transmit without
running out the receiver’s socket buffer

 This number is called the advertised
window size

application
process

y
r

TCP socket
receiver buffers

from sender %
|
|
|

receiver protocol stack

Flow control in TCP headers

0
01234
+—t—t—t—t—+

+ot—t—t—t—+

+ot—t—t—t—+

+ot—t—t—t—+
| Data |

| Offset| Reserved |R|C|S|S|Y|I|

+—t—t—t—t—+

+—t—t—t—t—+

tott—t—t—+

+—t—t—t—t-+

Note

1 2 3
56 7890123456789 01234561789°01
B T s T T R s h Tt [RNE _BEE S e S
Source Port | Destination Port
s s L kTt R S S R ket L T R i i
Sequence Number
s L I e L ek o S e e S T e T e l ot (B
Acknowledgment Number
B T ek T T T e s JTh _BEE S N S
|U|A|P|R|S|F|

|G|K|H|T|N|N]
e S S R s L +ot—t—t—t—t-
Checksum | Urgent Pointer
—tetetot bttt ettt bt ottt bbbttt =t =+
Options | Padding
—t—ttot—t ottt bttt bttt b bttt =t =+
data
—t—t—t—t oottt ottt ottt —t—F—F =t =t =+ =+

TCP Header Format

that one tick mark represents one bit position.

TCP flow control

* Receiver advertises to sender (in the ACK)

how much free buffer is available

0

1 2

3

0123456789012345678901234561789°01
——

+otto

s e S e
Source Port | Desti

—t—t ettt —t—t-
nation Port

S

ottt
|

+et =t
| Dat
| offs

R

+—tt—

+otte

+—tt-

Sequence Number

i S (B B

Acknowledgment Number

T S R e S R s s It T S

a | |u|a|P|R|S|F]

et| Reserved |R|C|S|S|Y|I]|

| |G|X|H|T|N|N]|

e i I S N S R T et T B

Checksum | u

s o T T T T I S e
Options

i S L e it (B

data
s T T s ot S RTINS e S

TCP Header Format

Note that one tick mark represents one

S S A

+

—+—+

—+—+

S St S SR S S
| Padding |
—tototototot ottt ot

—tett—t—t b=ttt

bit position.

Sender
’

Receiver

TCP flow control

» Subsequently, the sender’s sliding window
cannot be larger than this value

 Restriction on new sequence numbers that
can be transmitted

» == restriction on sending rate!

Window <= Advertised window
4+—)

LA 0 1 2 3 45 6 7 0 1
View.

1 1

Last cumulative Last transmitted
ACK’ed seq # seq #

Sender

Receiver

TCP flow control

* If receiver app is too slow reading data:

* receiver socket buffer fills up

* S0, advertised window shrinks

* S0, sender’s window shrinks

« S0, sender’s sending rate reduces

Window <= Advertised window
4+—)

LA 0 1 2 3 45 6 7 0 1
View.

1 1

Last cumulative Last transmitted
ACK’ed seq # seq #

Sender

Receiver

TCP flow control

Flow control matches the sender’s
write speed to the receiver’s read
speed.

Window <= Advertised window
4+—)

LA 0 1 2 3 45 6 7 0 1
View.

1 1

Last cumulative Last transmitted
ACK’ed seq # seq #

Sender

Receiver

Sizing the receiver’s socket buffer

» Operating systems have a default receiver socket buffer size
* Listed among sysctl -a | grep net.inet.tcp on MAC
* Listed among sysctl -a | grep net.ipv4.tcp on Linux

* |If socket buffer is too small, sender can’t keep too many packets
in flight =» lower throughput

* If socket buffer is too large, too much memory consumed per
socket

* How big should the receiver socket buffer be?

Sizing the receiver’s socket buffer

» Case 1: Suppose the receiving app is reading data too slowly:

* no amount of receiver buffer can prevent low sender throughput if the
connection is long-lived!

Sizing the receiver’s socket buffer

» Case 2: Suppose the receiving app reads sufficiently fast on
average to match the sender’s writing speed.

« Assume the sender has a window of size W.
* The receiver must use a buffer of size at least W. Why?

« Captures two cases:

* (1) When the first sequence #s in the window are dropped

« Selective repeat. data in window buffered until the ACKs of delivered data
(within window) reach sender. Adv. win reduces sender’s window

* (2) When the sender sends a burst of data of size W
* Receiver may not match the instantaneous rate of the sender

Summary of flow control

« Keep memory buffers available at the receiver whenever the
sender transmits data

* Inform the sender on an on-going basis (each ACK)
* Function #1: match sender speed to receiver speed

 Function #2: reassemble data in order and hold for selective
repeat

 Correct socket buffer sizing is important for TCP throughput

Info on (tuning) TCP stack parameters

* https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/
wkvm/wkvm_c tune_tcpip.htm

* https://cloud.google.com/solutions/tcp-optimization-for-network-
performance-in-gcp-and-hybrid

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/wkvm/wkvm_c_tune_tcpip.htm
https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid

