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Quick recap of concepts

Tp layer

TCP: 
Connection-oriented
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Implications of ordered delivery
• Packets cannot be delivered to the application if there is an in-

order packet missing from the receiver’s buffer
• The receiver can only buffer so much out-of-order data
• Subsequent out-of-order packets dropped 
• It won’t matter that those packets successfully arrive at the receiver 

from the sender over the network

• TCP application-level throughput will suffer if there is too much 
packet reordering in the network
• Data may have reached the receiver but won’t be delivered to apps 

upon a recv() (...or may not even be buffered!)



Stream-Oriented Data 
Transfer



Sequence numbers in the app’s stream

TCP uses byte sequence numbers

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time
e.g., send() call
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Sequence numbers in the app’s stream

Packet boundaries aren’t important for TCP software
TCP is a stream-oriented protocol

(We use SOCK_STREAM when creating sockets)

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time
e.g., send() call

100 150 180 240 273 310



Sequence numbers in the app’s stream

… …

Data written by application over time
e.g., send() call

App does a recv()

1st 
recv()

2nd 
recv()

3rd 
recv()

4th 
recv() A recv() call may 

return a part of a 
packet, a full packet, 
or multiple packets 
together.



How much data to keep in 
flight?
Stop and Wait
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We want to increase throughput, but …
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Flow Control



Socket buffers can become full
• Applications may read data slower than 

the sender is pushing data in
• Example: what if an app infrequently or 

never calls recv()?

• There may be too much reordering or 
packet loss in the network
• What if the first few bytes of a window are 

lost or delayed?

• Receivers can only buffer so much 
before dropping subsequent data
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Goal: avoid drops due to buffer fill
• Have a TCP sender only send as much 

as the free buffer space available at the 
receiver. 
• Amount of free buffer varies over time!
• TCP implements flow control
• Receiver’s ACK contains the amount of 

data the sender can transmit without 
running out the receiver’s socket buffer
• This number is called the advertised 

window size
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Flow control in TCP headers



TCP flow control
• Receiver advertises to sender (in the ACK) 

how much free buffer is available
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TCP flow control
• Subsequently, the sender’s sliding window 

cannot be larger than this value
• Restriction on new sequence numbers that 

can be transmitted
• == restriction on sending rate!
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TCP flow control
• If receiver app is too slow reading data: 
• receiver socket buffer fills up
• So, advertised window shrinks
• So, sender’s window shrinks
• So, sender’s sending rate reduces
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TCP flow control

Flow control matches the sender’s 
write speed to the receiver’s read 
speed.
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Sizing the receiver’s socket buffer
• Operating systems have a default receiver socket buffer size
• Listed among sysctl –a | grep net.inet.tcp on MAC
• Listed among sysctl –a | grep net.ipv4.tcp on Linux

• If socket buffer is too small, sender can’t keep too many packets 
in flight è lower throughput

• If socket buffer is too large, too much memory consumed per 
socket

• How big should the receiver socket buffer be?



Sizing the receiver’s socket buffer
• Case 1: Suppose the receiving app is reading data too slowly:
• no amount of receiver buffer can prevent low sender throughput if the 

connection is long-lived!



Sizing the receiver’s socket buffer
• Case 2: Suppose the receiving app reads sufficiently fast on 

average to match the sender’s writing speed.  
• Assume the sender has a window of size W.
• The receiver must use a buffer of size at least W. Why?

• Captures two cases:
• (1) When the first sequence #s in the window are dropped 
• Selective repeat: data in window buffered until the ACKs of delivered data 

(within window) reach sender. Adv. win reduces sender’s window
• (2) When the sender sends a burst of data of size W
• Receiver may not match the instantaneous rate of the sender



Summary of flow control
• Keep memory buffers available at the receiver whenever the 

sender transmits data
• Inform the sender on an on-going basis (each ACK)
• Function #1: match sender speed to receiver speed
• Function #2: reassemble data in order and hold for selective 

repeat

• Correct socket buffer sizing is important for TCP throughput



Info on (tuning) TCP stack parameters
• https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/

wkvm/wkvm_c_tune_tcpip.htm

• https://cloud.google.com/solutions/tcp-optimization-for-network-
performance-in-gcp-and-hybrid

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/wkvm/wkvm_c_tune_tcpip.htm
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