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TCP Header Format

Note that one tick mark represents one bit position.
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Implications of ordered delivery

« Packets cannot be delivered to the application if there is an in-
order packet missing from the receiver’s buffer
* The receiver can only buffer so much out-of-order data
« Subsequent out-of-order packets dropped

* [t won’t matter that those packets successfully arrive at the receiver
from the sender over the network

« TCP application-level throughput will suffer if there is too much
packet reordering in the network

« Data may have reached the receiver but won’t be delivered to apps
upon a recv() (...or may not even be buffered!)



Stream-Oriented Data
Transfer



Sequence numbers in the app’s stream

Data written by application over time
e.g., send() call
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Increasing sequence #s

TCP uses byte sequence numbers



Sequence numbers in the app’s stream

Data written by application over time
e.g., send() call

100 150 180 240 273
packet packet packet | packet packet

Increasing sequence #s

Packet boundaries aren’t important for TCP software

TCP is a stream-oriented protocol
(We use SOCK_STREAM when creating sockets)



Sequence numbers in the app’s stream

Data written by application over time
e.g., send() call

2nd
recv()| recv()

A recv() call may
return a part of a
packet, a full packet,

or multiple packets
App does a recv() together.
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We want to increase throughput, but ...
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Flow Control



Socket buffers can become full

* Applications may read data slower than
the sender is pushing data in

« Example: what if an app infrequently or
never calls recv()?

* There may be too much reordering or
packet loss in the network

« What if the first few bytes of a window are
lost or delayed?

* Receivers can only buffer so much
before dropping subsequent data
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Goal: avoid drops due to buffer fill

« Have a TCP sender only send as much
as the free buffer space available at the
receiver.

* Amount of free buffer varies over time!
« TCP implements flow control

* Receiver’s ACK contains the amount of
data the sender can transmit without
running out the receiver’s socket buffer

 This number is called the advertised
window size

application
process

y
r

TCP socket
receiver buffers

from sender %
|
|
|

receiver protocol stack



Flow control in TCP headers
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TCP Header Format

that one tick mark represents one bit position.



TCP flow control

* Receiver advertises to sender (in the ACK)

how much free buffer is available
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TCP flow control

» Subsequently, the sender’s sliding window
cannot be larger than this value

 Restriction on new sequence numbers that
can be transmitted

» == restriction on sending rate!

Window <= Advertised window
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TCP flow control

* If receiver app is too slow reading data:

* receiver socket buffer fills up

* S0, advertised window shrinks

* S0, sender’s window shrinks

« S0, sender’s sending rate reduces

Window <= Advertised window
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TCP flow control

Flow control matches the sender’s
write speed to the receiver’s read
speed.
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Sizing the receiver’s socket buffer

» Operating systems have a default receiver socket buffer size
* Listed among sysctl -a | grep net.inet.tcp on MAC
* Listed among sysctl -a | grep net.ipv4.tcp on Linux

* |If socket buffer is too small, sender can’t keep too many packets
in flight =» lower throughput

* If socket buffer is too large, too much memory consumed per
socket

* How big should the receiver socket buffer be?



Sizing the receiver’s socket buffer

» Case 1: Suppose the receiving app is reading data too slowly:

* no amount of receiver buffer can prevent low sender throughput if the
connection is long-lived!



Sizing the receiver’s socket buffer

» Case 2: Suppose the receiving app reads sufficiently fast on
average to match the sender’s writing speed.

« Assume the sender has a window of size W.
* The receiver must use a buffer of size at least W. Why?

« Captures two cases:

* (1) When the first sequence #s in the window are dropped

« Selective repeat. data in window buffered until the ACKs of delivered data
(within window) reach sender. Adv. win reduces sender’s window

* (2) When the sender sends a burst of data of size W
* Receiver may not match the instantaneous rate of the sender



Summary of flow control

« Keep memory buffers available at the receiver whenever the
sender transmits data

* Inform the sender on an on-going basis (each ACK)
* Function #1: match sender speed to receiver speed

 Function #2: reassemble data in order and hold for selective
repeat

 Correct socket buffer sizing is important for TCP throughput



Info on (tuning) TCP stack parameters

* https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/
wkvm/wkvm_c tune_tcpip.htm

* https://cloud.google.com/solutions/tcp-optimization-for-network-
performance-in-gcp-and-hybrid
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