
Flow Control
Lecture 14

http://www.cs.rutgers.edu/~sn624/352-S22
Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S22

Quick recap of concepts

Tp layer

TCP:
Connection-oriented

Selective repeat
Cumulative ACK Selective ACK

ACK x ACK x
SACK x1-x2,x3-x4,x5-x6

Precision of info: <

>

<

Retransmissions

Complexity, bugs, …

C
um

ul
at

iv
e

AC
K

Se
le

ct
iv

e
AC

K

application
process

TCP socket
receiver buffers

TCP
code

receiver TCP interaction

from sender

recv()

1 2 3 4

App
recv()

Ordering
Reassembly

Data with sequence #

Implications of ordered delivery
• Packets cannot be delivered to the application if there is an in-

order packet missing from the receiver’s buffer
• The receiver can only buffer so much out-of-order data
• Subsequent out-of-order packets dropped
• It won’t matter that those packets successfully arrive at the receiver

from the sender over the network

• TCP application-level throughput will suffer if there is too much
packet reordering in the network
• Data may have reached the receiver but won’t be delivered to apps

upon a recv() (...or may not even be buffered!)

Stream-Oriented Data
Transfer

Sequence numbers in the app’s stream

TCP uses byte sequence numbers

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time
e.g., send() call

100 150 180 240 273 310

Sequence numbers in the app’s stream

Packet boundaries aren’t important for TCP software
TCP is a stream-oriented protocol

(We use SOCK_STREAM when creating sockets)

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time
e.g., send() call

100 150 180 240 273 310

Sequence numbers in the app’s stream

… …

Data written by application over time
e.g., send() call

App does a recv()

1st
recv()

2nd
recv()

3rd
recv()

4th
recv() A recv() call may

return a part of a
packet, a full packet,
or multiple packets
together.

How much data to keep in
flight?
Stop and Wait

RTT

RTO

SEQ 0

SEQ 1

Retransmit

ACK

SEQ 0

RTT

SEQ 1SEQ 2SEQ 3

ACK 1

ACK 2

ACK 3

ACK 4

Pipelined Reliability

= window size Proportional to throughput

We want to increase throughput, but …
application

process

TCP socket
receiver buffers

TCP
code

receiver

from sender

recv()

sender
Multiple locations
for bottlenecks

What’s the
bottleneck? How
to adapt how
much data to
keep in flight?

Fl
ow

 C
on

tro
l

Congestion
Control

Flow Control

Socket buffers can become full
• Applications may read data slower than

the sender is pushing data in
• Example: what if an app infrequently or

never calls recv()?

• There may be too much reordering or
packet loss in the network
• What if the first few bytes of a window are

lost or delayed?

• Receivers can only buffer so much
before dropping subsequent data

application
process

TCP socket
receiver buffers

TCP
code

TCP receiver

from sender

Goal: avoid drops due to buffer fill
• Have a TCP sender only send as much

as the free buffer space available at the
receiver.
• Amount of free buffer varies over time!
• TCP implements flow control
• Receiver’s ACK contains the amount of

data the sender can transmit without
running out the receiver’s socket buffer
• This number is called the advertised

window size

application
process

TCP socket
receiver buffers

TCP
code

receiver protocol stack

from sender

Flow control in TCP headers

TCP flow control
• Receiver advertises to sender (in the ACK)

how much free buffer is available
Sender Receiver

1
2

3
4

1
2

4
5

3

TCP flow control
• Subsequently, the sender’s sliding window

cannot be larger than this value
• Restriction on new sequence numbers that

can be transmitted
• == restriction on sending rate!

Sender Receiver
1

2
3

4
1

2

4
5

3

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Window <= Advertised window

Sender’s
view:

TCP flow control
• If receiver app is too slow reading data:
• receiver socket buffer fills up
• So, advertised window shrinks
• So, sender’s window shrinks
• So, sender’s sending rate reduces

Sender Receiver
1

2
3

4
1

2

4
5

3

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Window <= Advertised window

Sender’s
view:

TCP flow control

Flow control matches the sender’s
write speed to the receiver’s read
speed.

Sender Receiver
1

2
3

4
1

2

4
5

3

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Window <= Advertised window

Sender’s
view:

Sizing the receiver’s socket buffer
• Operating systems have a default receiver socket buffer size
• Listed among sysctl –a | grep net.inet.tcp on MAC
• Listed among sysctl –a | grep net.ipv4.tcp on Linux

• If socket buffer is too small, sender can’t keep too many packets
in flight è lower throughput

• If socket buffer is too large, too much memory consumed per
socket

• How big should the receiver socket buffer be?

Sizing the receiver’s socket buffer
• Case 1: Suppose the receiving app is reading data too slowly:
• no amount of receiver buffer can prevent low sender throughput if the

connection is long-lived!

Sizing the receiver’s socket buffer
• Case 2: Suppose the receiving app reads sufficiently fast on

average to match the sender’s writing speed.
• Assume the sender has a window of size W.
• The receiver must use a buffer of size at least W. Why?

• Captures two cases:
• (1) When the first sequence #s in the window are dropped
• Selective repeat: data in window buffered until the ACKs of delivered data

(within window) reach sender. Adv. win reduces sender’s window
• (2) When the sender sends a burst of data of size W
• Receiver may not match the instantaneous rate of the sender

Summary of flow control
• Keep memory buffers available at the receiver whenever the

sender transmits data
• Inform the sender on an on-going basis (each ACK)
• Function #1: match sender speed to receiver speed
• Function #2: reassemble data in order and hold for selective

repeat

• Correct socket buffer sizing is important for TCP throughput

Info on (tuning) TCP stack parameters
• https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/

wkvm/wkvm_c_tune_tcpip.htm

• https://cloud.google.com/solutions/tcp-optimization-for-network-
performance-in-gcp-and-hybrid

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/wkvm/wkvm_c_tune_tcpip.htm
https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid

