
Demultiplexing & Error
Detection

Lecture 10
http://www.cs.rutgers.edu/~sn624/352-S22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S22

Quick recap of concepts

App layer
DASH
Video streaming over
HTTP
Varying quality, varying
sources, over the
duration of the video

Can use CDNs!

Tp layer Process
Process

Endpoint

Process
Process

Endpoint
Transport

layer
Network

layer

TCP UDP

Demultiplexing Packets

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Denotes an
attachment point
with the network.

Link layer

Network

Transport

Applications

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Network

Transport
Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Src IP, Dst IP,
Tp Protocol

Src port, Dst port
Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Src IP, Dst IP,
Tp Protocol

Src port, Dst port

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
Port 44262

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

UDP sockets:
(dst IP, dst port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connectionless:
the socket is
shared across
all sources!

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets** Some caveats!

(src IP, dst IP, src port, dst
port)
è
Socket ID

UDP sockets:
(dst IP, dst port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connectionless:
the socket is
shared across
all sources!

TCP sockets of different types
Listening (bound but
unconnected)

On server side

ss = socket(AF_INET, SOCK_STREAM)
ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet

Connected (Established)

On server side

csockid, addr = ss.accept()

On client side

cs.connect(serv_ip, serv_port)

(src IP, dst IP, src port, dst port)
è

Socket (csockid NOT ss)

TCP sockets of different types
Listening (bound but
unconnected)

On server side

ss = socket(AF_INET, SOCK_STREAM)
ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet

Connected (Established)

On server side

csockid, addr = ss.accept()

On client side

cs.connect(serv_ip, serv_port)

(src IP, dst IP, src port, dst port)
è

Socket (csockid NOT ss)

(dst IP, dst port)
è

Socket (ss)

accept()
creates a new
socket with the
4-tuple
(established)
mapping

Enables new connections to be
demultiplexed correctly Enables existing connections to be demultiplexed correctly

TCP demultiplexing
• When a TCP packet comes in, the operating system:

• Looks up table of existing connections using 4-tuple
• If success, send to corresponding (established) socket

• If fail (no table entry), look up table of listening connections using
just (dst IP, dst port)

• If success, send to corresponding (listening) socket

• If fail again (no table entry), send error to client
• Connection refused

UDP demultiplexing
• When a UDP packet comes in, the operating system:

• Looks up table of listening UDP sockets using (dst IP, dst port)
• If success, send packet to corresponding socket
• There are no established UDP sockets; they’re all “unconnected”

• If fail (no table entry), send error to client
• Port unreachable

Listing sockets and connections
• List all sockets with ss

• Create and observe UDP sockets with iperf

• Observe a TCP listening socket with iperf (or your own
server!)

User Datagram Protocol

• Best effort service. UDP
segments may be:

• Lost
• Delivered out of order to app

• UDP is connectionless
• Each UDP segment handled

independently of others (i.e. no
“memory” across packets)

• Suitable for one-off req/resp
• E.g., DNS uses UDP

• Also for loss-tolerant delay-
sensitive apps, e.g., video calling

Why are UDP’s guarantees even
okay?

Simple & low overhead compared
to TCP:
• No delays due to connection

establishment
• UDP can send data immediately

• No memory for connection
state at sender & receiver
• Small segment header
• UDP can blast away data as

fast as desired
• UDP has no “congestion control”

UDP: User Datagram Protocol [RFC 768]

UDP segment structure Length of
segment

(UDP header + data)

application
data

(message)

source port # dest port #

length checksum

16 bits 16 bits

Link layer

Network

Transport

Applications Error
detection

info
(more to
come)

UDP segment structure

application
data

(message)

source port # dest port #

length checksum

Link layer

Network

Transport

Applications

…
Source IP address
Destination IP address
…

Review: UDP demultiplexing

application
data

(message)

source port # dest port #

length checksum

…
Source IP address
Destination IP address
…

Machine 1

Machine 1

Machine 1

IP 1

IP 2

Port 1
Port 2

…

…

…
Port 44262

…

Port 65535

socket() Ports

Seeing UDP packets in action
• How to craft and send (UDP) packets?

• It’s simpler than you think!

• sudo tcpdump -i lo udp –XAvvv # observe packets
• sudo scapy # tool used to send crafted packets

• Example: send(IP(dst="127.0.0.1")/UDP(sport=1024,
dport=2048)/"hello world”, iface="lo")

• See other fields of UDP using UDP().fields_desc
• Scapy can send and receive crafted packets!

• However, it requires sudo (superuser privileges)

Error Detection

Why error detection?
• Network provides best effort service
• UDP is a simple and low overhead transport

• Data may be lost
• Data may be corrupted along the way (e.g., 1 -> 0)
• Data may be reordered

• However, simple error detection is possible!
• Was the data I received the same data the remote machine sent?

• Error detection is a useful feature for all transport protocols
including TCP

Error Detection in UDP and TCP
• Key idea: have sender compute a function over the data

• Store the result in the packet
• Receiver can check the function’s value in received packet

• An analogy: you’re sending a package of goodies and want
your recipient to know if goodies were leaked along the way

• Your idea: weigh the package; stamp the weight on the package
• Have the recipient weigh the package and cross-check the weight with

the stamped value

Requirements on error detection function
• Function must be easy to compute
• Function must capture the likely changes to the packet

• If the packet was corrupted through these likely changes, the function
value must change

• Function must be easy to verify

• UDP and TCP use a class of function called a checksum
• Very common idea: used in multiple parts of networks and computer

systems

Sender:
• treat segment contents as

sequence of 16-bit integers
• checksum: addition (1’s

complement sum) of segment
contents
• sender puts checksum value

into UDP checksum field

Receiver:
• compute a checksum of the

received segment, including
the checksum in packet itself
• check if the resulting

(computed) checksum is 0
• NO – an error is detected
• YES – assume no error

UDP & TCP’s Checksum function

• Very similar to regular (unsigned) binary addition.
• However, when adding numbers, a carryout from the most

significant bit needs to be added to the result
• Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

28

Computing 1’s complement sum

From the UDP specification (RFC 768)
• Checksum is the 16-bit one's complement of the one's

complement sum of a pseudo header of information from the IP
header, the UDP header, and the data, padded with zero octets
at the end (if necessary) to make a multiple of two octets.

• The pseudo header conceptually prefixed to the UDP header
contains the source address, the destination address, the
protocol, and the UDP length.

Some observations on checksums
• Checksums don’t detect all bit errors

• Consider (x, y) vs. (x – 1, y + 1) as adjacent 16-bit values in packet
• Analogy: you can’t assume the package hasn’t been meddled with if its

weight matches the one on the stamp. More smarts needed for that. J
• But it’s a lightweight method that works well in many cases

• Checksums are part of the packet; they can get corrupted too
• The receiver will just declare an error if it finds an error
• However, checksums don’t enable the receiver to detect where the error lies

or correct the error(s)
• Checksum is an error detection mechanism; not a correction mechanism.

Some observations on checksums
• Checksums are insufficient for reliable data delivery

• If a packet is lost, so is its checksum

• UDP and TCP use the same checksum function
• TCP also uses the lightweight error detection capability
• However, TCP has more mature mechanisms for reliable data delivery

(more to come on this)

Playing with checksums

Summary of UDP
• UDP is a thin shim around network layer’s best-effort delivery

• One-off request/response messages
• Lightweight transport for loss-tolerant delay-sensitive applications

• Provides basic multiplexing/demultiplexing for application
• No reliability, performance, or ordering guarantees
• Can do basic error detection (bit flips) using checksums

• Error detection is necessary to deliver data reliably, but it is insufficient

