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TCP sockets of different types
Listening (bound but  
unconnected)

# On server side

ss = socket(AF_INET, SOCK_STREAM)
ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet

Connected (Established)

# On server side

csockid, addr = ss.accept()

# On client side

cs.connect(serv_ip, serv_port)

(src IP,  dst IP, src port, dst port)
è

Socket (csockid NOT ss)



TCP sockets of different types
Listening (bound but  
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ss = socket(AF_INET, SOCK_STREAM)
ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet
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TCP demultiplexing
• When a TCP packet comes in, the operating system:

• Looks up table of existing connections using 4-tuple
• If success, send to corresponding (established) socket

• If fail (no table entry), look up table of listening connections using 
just (dst IP, dst port)

• If success, send to corresponding (listening) socket

• If fail again (no table entry), send error to client
• Connection refused



UDP demultiplexing
• When a UDP packet comes in, the operating system:

• Looks up table of listening UDP sockets using (dst IP, dst port)
• If success, send packet to corresponding socket
• There are no established UDP sockets; they’re all “unconnected”

• If fail (no table entry), send error to client
• Port unreachable



Listing sockets and connections
• List all sockets with ss

• Create and observe UDP sockets with iperf

• Observe a TCP listening socket with iperf (or your own 
server!)



User Datagram Protocol



• Best effort service. UDP 
segments may be:

• Lost
• Delivered out of order to app

• UDP is connectionless
• Each UDP segment handled 

independently of others (i.e. no 
“memory” across packets)

• Suitable for one-off req/resp
• E.g., DNS uses UDP

• Also for loss-tolerant delay-
sensitive apps, e.g., video calling

Why are UDP’s guarantees even 
okay?

Simple & low overhead compared 
to TCP:
• No delays due to connection 

establishment
• UDP can send data immediately

• No memory for connection 
state at sender & receiver
• Small segment header
• UDP can blast away data as 

fast as desired
• UDP has no “congestion control”

UDP: User Datagram Protocol [RFC 768]
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Seeing UDP packets in action
• How to craft and send (UDP) packets?

• It’s simpler than you think! 

• sudo tcpdump -i lo udp –XAvvv # observe packets
• sudo scapy # tool used to send crafted packets

• Example: send(IP(dst="127.0.0.1")/UDP(sport=1024, 
dport=2048)/"hello world”, iface="lo")

• See other fields of UDP using UDP().fields_desc
• Scapy can send and receive crafted packets! 

• However, it requires sudo (superuser privileges)



Error Detection



Why error detection?
• Network provides best effort service
• UDP is a simple and low overhead transport

• Data may be lost
• Data may be corrupted along the way (e.g., 1 -> 0)
• Data may be reordered

• However, simple error detection is possible!
• Was the data I received the same data the remote machine sent?

• Error detection is a useful feature for all transport protocols 
including TCP



Error Detection in UDP and TCP
• Key idea: have sender compute a function over the data

• Store the result in the packet
• Receiver can check the function’s value in received packet

• An analogy: you’re sending a package of goodies and want 
your recipient to know if goodies were leaked along the way

• Your idea: weigh the package; stamp the weight on the package
• Have the recipient weigh the package and cross-check the weight with 

the stamped value



Requirements on error detection function
• Function must be easy to compute
• Function must capture the likely changes to the packet

• If the packet was corrupted through these likely changes, the function 
value must change

• Function must be easy to verify

• UDP and TCP use a class of function called a checksum
• Very common idea: used in multiple parts of networks and computer 

systems



Sender:
• treat segment contents as 

sequence of 16-bit integers
• checksum: addition (1’s 

complement sum) of segment 
contents
• sender puts checksum value 

into UDP checksum field

Receiver:
• compute a checksum of the 

received segment, including 
the checksum in packet itself
• check if the resulting 

(computed) checksum is 0
• NO – an error is detected
• YES – assume no error

UDP & TCP’s Checksum function



• Very similar to regular (unsigned) binary addition.
• However, when adding numbers, a carryout from the most 

significant bit needs to be added to the result
• Example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum
checksum

28

Computing 1’s complement sum



From the UDP specification (RFC 768)
• Checksum is the 16-bit one's complement of the one's 

complement sum of a pseudo header of information from the IP 
header, the UDP header, and the data, padded with zero octets 
at the end (if necessary) to make a multiple of two octets. 

• The pseudo header conceptually prefixed to the UDP header 
contains the source address, the destination address, the 
protocol, and the UDP length.



Some observations on checksums
• Checksums don’t detect all bit errors

• Consider (x, y) vs. (x – 1, y + 1) as adjacent 16-bit values in packet
• Analogy: you can’t assume the package hasn’t been meddled with if its 

weight matches the one on the stamp. More smarts needed for that. J
• But it’s a lightweight method that works well in many cases

• Checksums are part of the packet; they can get corrupted too
• The receiver will just declare an error if it finds an error
• However, checksums don’t enable the receiver to detect where the error lies 

or correct the error(s)
• Checksum is an error detection mechanism; not a correction mechanism.



Some observations on checksums
• Checksums are insufficient for reliable data delivery

• If a packet is lost, so is its checksum

• UDP and TCP use the same checksum function
• TCP also uses the lightweight error detection capability
• However, TCP has more mature mechanisms for reliable data delivery 

(more to come on this)



Playing with checksums



Summary of UDP
• UDP is a thin shim around network layer’s best-effort delivery

• One-off request/response messages
• Lightweight transport for loss-tolerant delay-sensitive applications

• Provides basic multiplexing/demultiplexing for application
• No reliability, performance, or ordering guarantees
• Can do basic error detection (bit flips) using checksums

• Error detection is necessary to deliver data reliably, but it is insufficient


