
DASH, Transport Intro

Lecture 9
http://www.cs.rutgers.edu/~sn624/352-S22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S22

Quick recap of concepts

App layer

Video Bitrate Bits played out
per second
(can vary over
video’s lifetime)

Con
sta

nt
bit

rat
e v

ide
o

tra
ns

mitte
d @

se
rve

r

C
um

ul
at

iv
e

da
ta

time

Ide
al

@
 cl

ien
t

variable
network
delay

Rea
lity

Buffer at the client to hold
frames initially until playout
delay tp
Choosing tp is hard! Don’t
know buffer fill rate apriori
Adaptive bit-rate selection

Dynamic Adaptive Streaming
over HTTP (DASH)

Streaming multimedia with DASH
• Dynamic Adaptive Streaming over HTTP

• Used by Netflix and most popular video streaming services
• Adaptive: Perform video bit rate adaptation

• It can be done on the client, or the server (with client feedback)
• Dynamic: Retrieve a single video from multiple sources
• The DASH video server is just a standard HTTP server

• Provides video/audio content in multiple formats and encodings
• Leverage existing web-based infrastructure

• DNS
• CDNs!

DASH: Key ideas
• Content (video, audio,

transcript, etc.) divided
into segments (time)
• Algorithms to determine

and request varying
attributes (e.g., bitrate,
language) for each
segment
• Goal: ensure good

quality of service, match
user prefs, etc.

Web Browser
Or Video Client

Media
player

HTTP
client

Server

Media Presentation
Description (manifest)

Video Audio

Transcripts

Issue requests on time.
Pick attributes for each

segment of content

What does the manifest contain?

Source: Stockhammer, MMSys.
https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf

Periods:
Durations
of content

Adaptation set:
functionally
equivalent
content

Representations:
codecs, bit rates,
etc.

Multiple
segments per
representation

URL available
for each
segment

Byte ranges
per segment
(HTTP header
for a range
request)

Functionally equivalent: RSes of
given AS
Functionally different: different ASes

Dynamic changes in stream quality

Dynamic changes in stream location
• Just an HTTP request for an HTTP object

User

YouTube
origin servers

CDN servers
caching the
video

1. HTTP GET
request for video

URL

2. HTTP reply
containing html to

construct the web page,
manifest, with URLs for

video content

3. HTTP GET
request

for URLs

4. HTTP reply
with cached

resources at those
URLs

Internet

CDN DNS
points user
to best CDN
server

Subtle: DNS granularity
is per (sub)domain.
Content from different
(sub)domains can go to
different CDN servers
or origin

DASH reference player
• https://reference.dashif.org/dash.js/latest/samples/dash-if-

reference-player/index.html

https://reference.dashif.org/dash.js/latest/samples/dash-if-reference-player/index.html

DASH Summary
• Piggyback video on HTTP: widely used
• Enables independent HTTP requests per segment

• Choose dynamic quality & preferences over time
• Independent HTTP byte ranges

• Works well with CDNs
• Fetch segments from locations other than the origin server
• Fetch different segments from possibly different locations

• More resources on DASH
• https://www.w3.org/2010/11/web-and-

tv/papers/webtv2_submission_64.pdf
• https://www.youtube.com/watch?v=xgowGnH5kUE

https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf
https://www.youtube.com/watch?v=xgowGnH5kUE

Application Layer: Wrap-up
• Name resolution, the web, mail, video
• Protocols built over the socket() abstraction
• Simple designs go a long way

• Plain text protocols, header-based evolution, …
• Infrastructure for functionality, performance, …

• Mail servers, CDNs, proxies, …
• Fit your apps to run on browsers: run almost anywhere (e.g. video)
• Apps are ultimately what users and most engineers care about
• BUT: if you don’t understand what’s under the hood, you risk bad

design and poor performance for your Internet-facing applications

App layerApp layer

Transport

13

Transport

Application

Transport

Network

Host-to-Net …

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 X.25 ATM

HTTPS

Tp layer

• Provide a communication
abstraction between application
processes
• Transport protocols run @

endpoints
• send side: transport breaks app messages

into segments, passes to network layer
• recv side: reassembles segments into

messages, passes to app layer

• Multiple transport protocols
available to apps
• Very popular in the Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport services and protocols

• Network layer: abstraction
to communicate between
endpoints. Network layer
provides best effort packet
delivery to a remote
endpoint.

• Transport layer:
communication abstraction
between processes.
Delivers packets to the
process.

Household analogy:
3 kids sending letters to 3

kids
• endpoints = houses
• processes = kids
• app messages = letters in

envelopes
• transport protocol = Alice

and Bob who de/mux to
in-house siblings

• network-layer protocol =
postal service

Transport vs. network layer
Alice

Bob

Identifying a single conversation
• Application connections are

identified by 4-tuple:

• Source IP address
• Source port
• Destination IP address
• Destination port

• In this analogy,

• Source address: the address of
the first house
• Source port: name of a kid in the

first house
• Destination address: the address

of the second house
• Destination port: name of a kid in

the second house

Demultiplexing Packets

Two popular transports

Transmission Control
Protocol (TCP)
• Connection-based: the

application remembers the
other process talking to it.
• Suitable for longer-term,

contextual data transfers, like
HTTP, file transfers, etc.
• Guarantees: reliability,

ordering, congestion control

User Datagram Protocol
(UDP)
• Connectionless: app doesn’t

remember the last process or
source that talked to it.
• Suitable for single req/resp

flows, like DNS.
• Guarantees: basic error

detection

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Denotes an
attachment point
with the network.

Link layer

Network

Transport

Applications

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Network

Transport
Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Src IP, Dst IP,
Tp Protocol

Src port, Dst port
Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Src IP, Dst IP,
Tp Protocol

Src port, Dst port

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
Port 44262

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

UDP sockets:
(dst IP, dst port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connectionless:
the socket is
shared across
all sources!

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets** Some caveats!

(src IP, dst IP, src port, dst
port)
è
Socket ID

UDP sockets:
(dst IP, dst port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connectionless:
the socket is
shared across
all sources!

TCP sockets of different types
Listening (bound but
unconnected)

On server side

ss = socket(AF_INET, SOCK_STREAM)
ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet

Connected (Established)

On server side

csockid, addr = ss.accept()

On client side

cs.connect(serv_ip, serv_port)

(src IP, dst IP, src port, dst port)
è

Socket (csockid NOT ss)

TCP sockets of different types
Listening (bound but
unconnected)

On server side

ss = socket(AF_INET, SOCK_STREAM)
ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet

Connected (Established)

On server side

csockid, addr = ss.accept()

On client side

cs.connect(serv_ip, serv_port)

(src IP, dst IP, src port, dst port)
è

Socket (csockid NOT ss)

(dst IP, dst port)
è

Socket (ss)

accept()
creates a new
socket with the
4-tuple
(established)
mapping

Enables new connections to be
demultiplexed correctly Enables existing connections to be demultiplexed correctly

TCP demultiplexing
• When a TCP packet comes in, the operating system:

• Looks up table of existing connections using 4-tuple
• If success, send to corresponding (established) socket

• If fail (no table entry), look up table of listening connections using
just (dst IP, dst port)

• If success, send to corresponding (listening) socket

• If fail again (no table entry), send error to client
• Connection refused

UDP demultiplexing
• When a UDP packet comes in, the operating system:

• Looks up table of listening UDP sockets using (dst IP, dst port)
• If success, send packet to corresponding socket
• There are no “established” UDP sockets

• If fail (no table entry), send error to client
• Port unreachable

Listing sockets and connections
• List all sockets with ss

• Create and observe UDP sockets with iperf

• Observe a TCP listening socket with iperf (or your own
server!)

