
The Application Layer:
Video Streaming

Lecture 8
http://www.cs.rutgers.edu/~sn624/352-S22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S22

Quick recap of concepts

App layer

Sender’s
user agent

Sender’s
mail server

Recipient’s
mail server

Recipient’s
user agent

SMTP

Simple Mail Transfer
Protocol (SMTP)

SMTP

??

Mail access protocols
POP, IMAP, HTTP

Video
representation:
Pixels in Frames
Spatial coding
Temporal coding

Codec

Video codecs: terminology

• Video bit rate: effective number of bits per second of the
video after encoding
•Higher bit rate == higher perceptual quality
•CBR: (constant bit rate): fixed bit-rate video
• VBR: (variable bit rate): different parts of the video have

different bit rates, e.g., changes in color, motion, etc.
• For VBR, we talk about average bit-rate over video’s duration

https://blog.video.ibm.com/streaming-video-tips/what-is-video-encoding-codecs-compression-techniques/

Networking multimedia: 3 types
• On-demand streamed video/audio
• Can begin playout before downloading the entire file
• Ful video/audio stored at the server: able to transmit faster than

audio/video will be rendered (with storing/buffering at client)
• e.g., Spotify, YouTube, Netflix

• Conversational voice or video over IP
• interactive human-to-human communication limits delay tolerance
• e.g., Zoom, Google Stadia

• Live streamed audio, video
• e.g, sporting event on sky sports
• Can buffer a little, but must be close to the “live edge” of content

On-demand Video Streaming

Streaming (stored) video
•Media is prerecorded at different qualities
• Available in storage at the server

•Client downloads an initial portion and starts
viewing
• The rest is downloaded as time progresses
• No need for user to wait for entire content to be

downloaded!
•Can change the quality of the content and

where it’s fetched mid-stream
• More on this soon

Streaming stored video

1. video
recorded
(e.g., 30
frames/sec)

2. video
sentC

um
ul

at
iv

e
da

ta

(e
.g

. b
yt

es
)

streaming: at this time, client
playing out early part of video,
while server still sending later
part of video

network delay
(fixed in this

example)
time

3. video received,
played out at client
(30 frames/sec)

7

Server
e.g. Netflix

Client
e.g., your
phone

Constant
bit rate
video

Streaming stored video: challenges
• Continuous playout constraint: once client playout begins,

playback must match the original timing of the video (why?)

• But network delays are variable!

• Clients have a client-side buffer of downloaded video to
absorb variation in network conditions

• Client interactivity: pause, fast-forward, rewind, jump through
video

8

constant bit
rate video

transmission
C

um
ul

at
iv

e
da

ta

time

variable
network
delay

client video
reception

constant bit
rate video

playout at client

client playout
delay

bu
ffe

re
d

vi
de

o

Client-side buffering with playout delay:
compensate for network-added delays and variations in the delay

Scenario 1: Constant bit-rate video

9

constant bit
rate video

transmission
C

um
ul

at
iv

e
da

ta

time

variable
network
delay

client video
reception

constant bit
rate video

playout at client

client playout
delay

bu
ffe

re
d

vi
de

o

Playout delay that’s too small can cause stalls
There’s nothing in the buffer to show to the user

Scenario 2: Small playout delay

10

Client-side buffering, playout

variable fill
rate, x(t)

Client’s
buffer, size Bmax

playout rate,
e.g., CBR r

buffer fill level,
B(t)

video server

client

11

Most video is broken up in time into multiple segments
Client downloads video segment by segment
For example: a segment might be 4 seconds worth of video.

variable fill
rate, x(t)

playout rate,
e.g., CBR r

buffer fill level,
B(t)

video server

client

1. Initial fill of buffer until playout begins at tp
2. playout begins at tp
3. buffer fill level varies over time as fill rate x(t)

varies (assume playout rate r is constant for now)
12

Client-side buffering, playout

Client’s
buffer, size Bmax

variable fill
rate, x(t)

playout rate,
e.g., CBR r

buffer fill level,
B(t)

video server

13

Client-side buffering, playout

playout buffering: average fill rate (x), playout rate (r):
• x < r: buffer eventually empties for a sufficiently long video. Stall and

rebuffering
• x > r: buffer will not empty, provided the initial playout delay is large

enough to absorb variability in x(t)
• initial playout delay tradeoff: buffer starvation less likely with larger

delay, but also incur a larger delay until the user begins watching

Client’s
buffer, size Bmax

variable fill
rate, x(t)

playout rate,
e.g., CBR r

buffer fill level,
B(t)

video server

14

Client-side buffering, playout

playout buffering: average fill rate (x), playout rate (r):
• is x < r or x > r for a given network connection?
• It is hard to predict this in general!

• Best effort network suffers long queues, paths with low bandwidth, …
• How to set playout rate r?

• Too low a bit-rate r: video has poorer quality than needed
• Too high a bit-rate r: buffer might empty out. Stall/rebuffering!

Client’s
buffer, size Bmax

Adaptive bit–rate video
• Motivation: Want to provide high quality video experience, without

stalls
• Observations:
• Videos come in different qualities (average bit rates)
• Versions of the video for different quality levels readily available
• Different segments of video can be downloaded separately

• Adapt bit rate per segment through collaboration between the
video client (e.g., your browser) and the server (e.g., @ Netflix)
• Adaptive bit-rate (ABR) video: change the bit-rate (quality) of next

video segment based on network and client conditions
• A typical strategy: Buffer-based rate adaptation

Buffer-based bit-rate adaptation
• Key idea: If there is a large stored buffer of video, optimize

aggressively for video quality, i.e., high bit rates

• Else (i.e., buffer has low occupancy), avoid stalls by being
conservative and ask for a lower quality (bit-rate)
• Hope: lower bandwidth requirement of a lower quality stream is satisfiable

more easily

Buffer-based bit-rate adaptation

http://yuba.stanford.edu/~nickm/papers/sigcomm2014-video.pdf
A Buffer-Based Approach to Rate Adaptation

A highly effective method
to provide high video
quality despite variable and
intermittently poor
network conditions.

Used by Netflix.

Dynamic Adaptive Streaming
over HTTP (DASH)

Streaming multimedia with DASH
• Dynamic Adaptive Streaming over HTTP
• Used by Netflix and most popular video streaming services

• Adaptive: Perform video bit rate adaptation
• It can be done on the client, or the server (with client feedback)

• Dynamic: Retrieve a single video from multiple sources
• The DASH video server is just a standard HTTP server
• Provides video/audio content in multiple formats and encodings

• Leverage existing web-based infrastructure
• DNS
• CDNs!

DASH: Key ideas
• Content (video, audio,

transcript, etc.) divided
into segments (time)
• Algorithms to determine

and request varying
attributes (e.g., bitrate,
language) for each
segment
• Goal: ensure good

quality of service, match
user prefs, etc.

Web Browser
Or Video Client

Media
player

HTTP
client

Server

Media Presentation
Description (manifest)

Video Audio

Transcripts

Issue requests on time.
Pick attributes for each

segment of content

What does the manifest contain?

Source: Stockhammer, MMSys.
https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf

Periods:
Durations
of content

Adaptation set:
functionally
equivalent
content

Representations:
codecs, bit rates,
etc.

Multiple
segments per
representation

URL available
for each
segment

Byte ranges
per segment
(HTTP header
for a range
request)

Dynamic changes in stream quality

Get stream from anywhere!
• Just an HTTP request for an HTTP object

User

YouTube
origin servers

CDN servers
caching the
video

1. HTTP GET
request for video

URL

2. HTTP reply
containing html to
construct the web

page, manifest, with
URsL for video

content

3. HTTP GET
request

for URLs

4. HTTP reply
with cached

resources at those
URLs

Internet

DASH reference player
• https://reference.dashif.org/dash.js/latest/samples/dash-if-

reference-player/index.html

https://reference.dashif.org/dash.js/latest/samples/dash-if-reference-player/index.html

DASH Summary
• Piggyback video on HTTP: widely used
• Enables independent HTTP requests per segment
• Choose dynamic quality & preferences over time
• Independent HTTP byte ranges

• Works well with CDNs
• Fetch segments from locations other than the origin server
• Fetch different segments from possibly different locations

• More resources on DASH
• https://www.w3.org/2010/11/web-and-

tv/papers/webtv2_submission_64.pdf
• https://www.youtube.com/watch?v=xgowGnH5kUE

https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf
https://www.youtube.com/watch?v=xgowGnH5kUE

