The Application Layer:
Video Streaming

Lecture 8
http://www.cs.rutgers.edu/~sn624/352-S22

Srinivas Narayana

NNNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-S22

Quick recap of concepts

Video
representation:
Pixels in Frames

Spatial coding

Temporal coding

Codec

g he

Simple Mail Transfer

Protocol (SMTP) Mail access protocols
- S POP, IMAP, HTTP

/ mail server S|\/|T|:> mail server
Sender’s SMTP \ Recipient’s
user agent user agent

Video codecs: terminology

* \Video bit rate: effective number of bits per second of the
video after encoding

 Higher bit rate == higher perceptual quality
* CBR: (constant bit rate): fixed bit-rate video

* VBR: (variable bit rate): different parts of the video have
different bit rates, e.g., changes in color, motion, etc.
* For VBR, we talk about average bit-rate over video’s duration

https://blog.video.ibm.com/streaming-video-tips/what-is-video-encoding-codecs-compression-techniques/

Networking multimedia: 3 types

* On-demand streamed video/audio
« Can begin playout before downloading the entire file

* Ful video/audio stored at the server: able to transmit faster than
audio/video will be rendered (with storing/buffering at client)

* e.g., Spotify, YouTube, Netflix

» Conversational voice or video over IP
* interactive human-to-human communication limits delay tolerance
* e.g., Zoom, Google Stadia

* Live streamed audio, video
* e.g, sporting event on sky sports
« Can buffer a little, but must be close to the “live edge” of content

On-demand Video Streaming

Streaming (stored) video

» Media is prerecorded at different qualities
 Available in storage at the server

* Client downloads an initial portion and starts
viewing
* The rest is downloaded as time progresses

* No need for user to wait for entire content to be
downloaded!

» Can change the quality of the content and
where it’s fetched mid-stream

* More on this soon

Streaming stored video

Cumulative data
(e.g. bytes)

Constant —
bit rate
video
Client
2. video : hore
sent
1. video 3. video received,
recorded . hetwork delay, [~ : played out atclient
(e.g., 30 v/ (fixed in this . (30 frames/sec) e
frames/sec)@Emmms . €xample) :

Server
e.g. Netflix

i streaming: at thls time, client
: playing out early part of video,
: while server still sending later
: part of video

..

Streaming stored video: challenges

« Continuous playout constraint: once client playout begins,
playback must match the original timing of the video (why?)

» But network delays are variable!

 (Clients have a client-side buffer of downloaded video to
absorb variation in network conditions

« Client interactivity: pause, fast-forward, rewind, jump through
video

Scenario 1: Constant bit-rate video

constant bit —

@ rate vi_deo client video J constant bit
o transmission reception | rate video
Q playout at client
s variable R
-] network - 3 o
:E; dela o
O g 2|7
client playout time
delay

Client-side buffering with playout delay:
compensate for network-added delays and variations in the delay

9

Scenario 2: Small playout delay

rate video

constant bit —

delay

©

"C—G' . .

3 transmission

(]

= _

© variable
=) network
-

oD

@)

buffered \ r
video

client vide constant bit
receptio rate video

I playout at client

client playout
delay

time

Playout delay that’s too small can cause stalls
There’s nothing in the buffer to show to the user

10

Client-side buffering, playout

buffer fill level,
<« B(t) &>

variable fill playout rate,
» = } o
>

video server «_ Clients __
buffer, size B,

client : ‘f

Most video is broken up in time into multiple segments
Client downloads video segment by segment
For example: a segment might be 4 seconds worth of video.

11

Client-side buffering, playout

buffer fill level,
-« B(t) —

variable fill playout rate,
rate, x(1) I e.g.,CBR r
>

video server «_ Client's
buffer, size B,

2

e
1. Initial fill of buffer until playout begins at t,

2. playout begins at t,
3. buffer fill level varies over time as fill rate x(t)
varies (assume playout rate r is constant for now)

client

12

Client-side buffering, playout

buffer fill level,

<« B(t) >
variable fill playout rate,
>
video server «_ Clients __

buffer, size B,

playout buffering: average fill rate (x), playout rate (r):

« X < r: buffer eventually empties for a sufficiently long video. Stall and
rebuffering

X > r: buffer will not empty, provided the initial playout delay is large
enough to absorb variability in x(t)

* Initial playout delay tradeoff: buffer starvation less likely with larger
delay, but also incur a larger delay until the user begins watching

13

Client-side buffering, playout

buffer fill level,

<« B(t) >
variable fill playout rate,
>
video server «_ Client's

buffer, size B,

playout buffering: average fill rate (x), playout rate (r):
* is X <ror x>r for a given network connection?
* It is hard to predict this in general!

 Best effort network suffers long queues, paths with low bandwidth, ...

* How to set playout rate r?
* Too low a bit-rate r: video has poorer quality than needed
 Too high a bit-rate r: buffer might empty out. Stall/rebuffering!

14

Adaptive bit—rate video

* Motivation: Want to provide high quality video experience, without
stalls »

 Observations:

* Videos come in different qualities (average bit rates)
* Versions of the video for different quality levels readily available
* Different segments of video can be downloaded separately

» Adapt bit rate per segment through collaboration between the
video client (e.g., your browser) and the server (e.g., @ Netflix)

« Adaptive bit-rate (ABR) video: change the bit-rate (quality) of next
video segment based on network and client conditions

A typical strategy: Buffer-based rate adaptation

Buffer-based bit-rate adaptation

» Key idea: If there is a large stored buffer of video, optimize
aggressively for video quality, i.e., high bit rates

» Else (i.e., buffer has low occupancy), avoid stalls by being
conservative and ask for a lower quality (bit-rate)

* Hope: lower bandwidth requirement of a lower quality stream is satisfiable
more easily

Buffer-based bit-rate adaptation

Q
©
] T — - .
@)
%
e R iS k y y 4
-_:,;;'.3\"’
w Area ..,-‘_f-’i""""if?' S af € f rom
é llllllllllllllllllllll .“‘:;/‘ < Un n e CeSS ary 3
. rebuffering
O R g Y 4 g 1
x .
Q
=z

Playout Buffer Occupancy

B..

max

A highly effective method
to provide high video
guality despite variable and
intermittently poor

network conditions.

Used by Netflix.

http://yuba.stanford.edu/~nickm/papers/sigcomm2014-video.pdf

A Buffer-Based Approach to Rate Adaptation

Dynamic Adaptive Streaming
over HTTP (DASH)

Streaming multimedia with DASH

« Dynamic Adaptive Streaming over HTTP
» Used by Netflix and most popular video streaming services

« Adaptive: Perform video bit rate adaptation
* |t can be done on the client, or the server (with client feedback)

* Dynamic: Retrieve a single video from multiple sources

 The DASH video server is just a standard HTTP server
* Provides video/audio content in multiple formats and encodings

* Leverage existing web-based infrastructure
* DNS
- CDNs!

DASH: Key ideas

» Content (video, audio,
transcript, etc.) divided —
into segments (time) client

* Algorithms to determine

and request varying Issue requests on time

. " u .
attributes (e.g., bitrate, Pick attributes for each
Ianguage) for each segment of content
segment

Video Server Audio
« Goal: ensure good

qguality of service, match I:":":":":l Transcripts I:”:":":":l
iser pres, et 00000 00 OO0 00000

Web Browser
Or Video Client

Media Presentation
Description (manifest)

What does the manifest contain?

Periods: Adaptation set: Representations:
Durations fungtlonally codecs, bit rates,
of content equivalent etc. i
\ content /
!
D /| Period id=2 |
Period id=| / start=60sec /" Adaptation Set |
start=0Osec
et Representation | Representation 2
i 2MB
Period id=2 AS Representation 2
start=60sec | 2MB Segment Info
Representation 3
\ 500KB
Period id=3 AS 2 \ ‘
il Representation 4
| \
\

Source: Stockhammer, MMSys.
https://www.w3.0rg/2010/11/web-and-tv/papers/webtv2_submission_64.pdf

Segment Info
Duration=60 sec

Initialization
Segment
http://ex.com/il.mp4

Media Segment |
start= 0 sec
http://ex.com/v |.mp4

Media Segment 2
start=15 sec
http://ex.com/v2.mp4

Media Segment 3
start=30 sec
http:/ex.com/v3.mp4

Media Segment 4
start=45sec
http://ex.com/v4.mp4

Multiple
segments per
representation

URL available
for each
segment

Byte ranges
per segment
(HTTP header
for a range
request)

Dynamic changes in stream quality

Get stream from anywhere!

« Just an HTTP request for an HTTP object

2. HTTP reply 3. HTTP GET

To— containing html to request

Yﬂu T[]he II construct the web for URLs
- page, manifest, with

YouTube URL for video

origin servers

CDN servers
caching the
video

1. HTTP GET
request for video 4. HTTP reply
URL with cached

resources at those

) /Q URLs

DASH reference player

* https://reference.dashif.org/dash.|s/latest/samples/dash-if-

reference-player/index.html

https://reference.dashif.org/dash.js/latest/samples/dash-if-reference-player/index.html

DASH Summary

 Piggyback video on HTTP: widely used

« Enables independent HTTP requests per segment
« Choose dynamic quality & preferences over time
* Independent HTTP byte ranges

» Works well with CDNs
* Fetch segments from locations other than the origin server
 Fetch different segments from possibly different locations

* More resources on DASH

* https://www.w3.0rg/2010/11/web-and-
tv/papers/webtv2 submission 64.pdf

e https://www.youtube.com/watch?v=xgowGnH5kUE

https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf
https://www.youtube.com/watch?v=xgowGnH5kUE

