
The Application Layer:
HTTP, SMTP

Lecture 6
http://www.cs.rutgers.edu/~sn624/352-S22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S22

Quick recap of concepts

App layer

HyperText Transfer Protocol (HTTP)
HTTP is a client/server application

Methods: GET/POST/…
Headers
User-agent/server/…

Response codes: 200, 404, etc.

Persistence
Connection

initiationRTT

RTT

HTTP req

HTTP resp

Cookies
Set-co

okie:
XXX

Cookie: XXX

Cookie file

Caching
e.g., proxy
server

3

Web caches: Machines that remember web responses for a network

Why cache web responses?

• Reduce response time for client requests

• Reduce traffic on an institution’s access link

Last lecture: Caches implemented in the form of a proxy server

Web caches

4

A global network of web caches
• Provisioned by ISPs and network operators
• Or content providers, like Netflix, Google, etc.

Uses (overlaps with uses of web caching in general)
• Reduce traffic on a network’s Internet connection, e.g.,

Rutgers
• Improve response time for users: CDN nodes are closer to

most users than origin servers
• Reduce bandwidth requirements on content provider
• Reduce $$ to maintain origin servers

Content Distribution Networks (CDNs)

Without CDN

• Problems:
• Huge bandwidth requirements for Rutgers
• Large propagation delays to reach users

5

128.6.4.2

DOMAIN NAME IP ADDRESS
www.yahoo.com 98.138.253.109

cs.rutgers.edu 128.6.4.2

www.google.com 74.125.225.243

www.princeton.edu 128.112.132.86

Cluster of Rutgers CS origin
servers (located in NJ, USA)

DNS

Clients
distributed
all over the
world

Where the CDN comes in
• Distribute content of the origin server over geographically

distributed CDN servers

• But how will users get to these CDN servers?

• Use DNS!
• DNS provides an additional layer of indirection
• Instead of returning IP address, return another DNS server (NS record)
• The second DNS server (run by the CDN) returns IP address to client

• The CDN runs its own DNS servers (CDN name servers)
• Custom logic to send users to the “closest” CDN web server

128.6.4.2

DOMAIN NAME IP ADDRESS
www.yahoo.com 98.138.253.109

cs.rutgers.edu 124.8.9.8 (NS record pointing
to CDN name server)

www.google.com 74.125.225.243

DOMAIN NAME IP ADDRESS
Cs.Rutgers.edu 12.1.2.3

Cs.Rutgers.edu 12.1.2.4

Cs.Rutgers.edu 12.1.2.5

Cs.Rutgers.edu 12.1.2.6

CDN Name Server (124.8.9.8)

12.1.2.3 12.1.2.4

12.1.2.512.1.2.6

Origin server

Client

CDN servers

With CDN

Custom
logic to
map ONE
domain
name to
one of
many IP
addresses!

NS record delegates the
choice of IP address to
the CDN name server.

Most requests go to CDN servers (caches).
CDN servers may request object from origin
Few client requests go directly to origin server

DNS
rep

ly
Popular
CDNs:
CloudFlare
Akamai
Level3
…

8

Summary of HTTP

•Request/response protocol
• ASCII-based human-readable message structures
• Improve performance using connection persistence,

caching, and CDN
• Enhanced stateful functionality using cookies
• Simple, highly-customizable protocol
• Just add headers

• Protocol that forms of the basis of the web we enjoy today!

Simple Mail Transfer Protocol

10

We’re all familiar with email.
How does it work?

12

Electronic Mail
Three major components:
1. User agents

• a.k.a. “mail reader”

• e.g., Applemail, Outlook

• Web-based user agents (ex: gmail)

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

13

2. Mail Servers
• Mailbox contains incoming messages for

user
• Message queue of outgoing (to be sent)

mail messages
• Sender’s mail server makes connection

to Receiver’s mail server
• IP address, port 25

3. SMTP protocol: client/server protocol
• Used to send messages
• Client: sending user agent or sending

mail server
• server: receiving mail server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Electronic Mail: Mail servers

14

1) Alice
(alice@rutgers.edu) uses
UA to compose message to
bob@nyu.edu

2) Alice’s UA sends message to
her mail server; message
placed in outgoing message
queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s incoming
mailbox

6) Sometime later, Bob invokes
his user agent to read
message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

Scenario: Alice sends message to Bob

Alice Bob

Rutgers mail server NYU mail server
A set of durable files

on the machine.
Persisted on disk.

Observations on these exchanges
• Mail servers are the “infrastructure” for email functionality
• Receiving the email on behalf of Bob, should Bob’s machine be turned off
• Retrying the delivery of the email to Bob on behalf of Alice, should Bob’s

mail server be unavailable in the first attempt
• The same machine can act as client or server based on context
• Rutgers’s mail server is the server when Alice sends the mail
• It is the client when it sends mail to Bob’s mail server

• SMTP is push-based: info is pushed from client to server
• Contrast to HTTP or DNS where info is pulled from the server

Sample SMTP interaction
• telnet <mail-server> 25
• HELO <sender-domain>
• MAIL FROM: <name>@<sender-domain>
• RCPT TO: <user>@<mail-server-domain>
• DATA
• Put data in, then [enter].[enter] Don’t forget the “.”
• You can add mail headers (later) to make your email look good

mailto:name@mydomain.com

MAIL command response codes

17

220: Service ready
250: Request command complete
354: Start mail input
421: Service not available
500: Unrecognized command

18

SMTP text message exchange
standardized in RFC 822
• Header lines, e.g.,
• To:
• From:
• Subject:
These are different from SMTP

commands!
(these would still be under

“DATA”)
• body
• the “message”.
• ASCII characters only

header

body

blank
line

Mail message format (stored on server)

19

• MIME: multimedia mail extension, RFC 2045, 2056
• additional headers in DATA header declare MIME content type
• A message can have many parts

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

Message format: multimedia extensions

Mail Access Protocols

27

• SMTP: delivery/storage to receiver’s server. Focused on push
• Mail access protocol: retrieval from server
• POP: Post Office Protocol [RFC 1939]

• Client connects to POP3 server on TCP port 110
• IMAP: Internet Mail Access Protocol [RFC 1730]

• Client connects to TCP port 143
• HTTP: gmail, outlook, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

POP3 or IMAP4
Mail access protocols

Alice Bob

POP vs IMAP
• POP3
• Stateless server
• UA-heavy processing
• UA retrieves email from

server, then typically deleted
from server
• Latest changes are at the UA
• Simple protocol (list,
retr, del within a POP
session)

• IMAP4
• Stateful server
• UA and server processing
• Server sees folders, etc. which

are visible to UAs
• Latest changes are at the server
• Complex protocol
• Heavily used: email sync across

devices, reliable, …
28

What about web-based email?
• Connect to mail servers via web browser
• Ex: gmail, scarletmail, etc.

• Browsers speak HTTP
• Email servers speak SMTP
• Need to bridge these two

29

Web based email

30

HTTP server
scarletmail.rut

gers.edu

HTTP server
outlook.com

SMTP
Client/Server
aspmx4.google

mail.com

SMTP server
outlook-
com.olc.protect
ion.outlook.comInternet

HTTP HTTP

Alice’s mail
provider’s server(s)

Bob’s mail
provider’s server(s)

Alice
alice@scarle
tmail.rutger
s.edu

Bob

May run on the
same or different
machines
(owned by your
webmail provider)

IMAP Bob
bob@outlook
.com

Application process
on the web server
machine uses SMTP
to push mail

App process on the web
server uses access
protocol to pull email

31

Comparing SMTP with HTTP
• HTTP: pull
• SMTP: push

• both have ASCII command/response interaction, status codes

• HTTP: each object encapsulated in its own response msg
• SMTP: multiple objects sent in multipart msg

• HTTP: can put non-ASCII data directly in response (dedicated
entity body for binary data)
• SMTP: need ASCII-based encoding (base64)

32

More themes from app-layer protocols
• Keep it simple until you really need complexity
• Start with ASCII-based design; stateless servers. Then introduce:
• Cookies for HTTP state
• Stateful mail (IMAP, folders, etc.) for email organization
• Security extensions (e.g., TLS)
• Performance optimizations: persistence, caching, indirection, …
• Use headers as much as possible to non-intrusively evolve functionality

• Partition functions based on what’s done best at the user (app) and
protocol. Examples:
• Content rendering for users (browser, UA) separate from protocol

operations (mail server)
• mail UA doesn’t need to be “always on” to send or receive email reliably.

That’s the mail server’s job

