
The Application Layer:
HTTP, SMTP

Lecture 5
http://www.cs.rutgers.edu/~sn624/352-S22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S22

Quick recap of concepts

Application layer

Domain Name System
128.45.10?.??

Distributed database
of name to IP addr
mappings.

HyperText
Transfer Protocol
(HTTP)

mail.google.com/inbox

Host name Path name

HTTP is a client/server application
Methods: GET/POST/…

Headers
User-agent/server/…

URL: a resource or process

Entry types in the database:
resource records. A, NS, MX, AAAA

Response codes: 200, 404, etc.

3

This lecture: more about HTTP!
• Persistent vs. Nonpersistent HTTP connections

• Cookies (User-server state)

• Web caches

HTTP Persistence

5

Non-persistent HTTP
• At most one object is sent

over a TCP connection.

• HTTP/1.0 uses nonpersistent
HTTP

Persistent HTTP
• Multiple objects can be sent

over single TCP connection
between client and server.

• HTTP/1.1 uses persistent
connections in default mode

TCP is a kind of reliable communication service provided by the transport
layer. It requires some resources for the connection to be set up at the

endpoints before data communication.

HTTP connections

6

Suppose user
visits a page

with text and 10
images.

1a. HTTP client initiates TCP
connection to HTTP server

2. HTTP client sends HTTP
request message

1b. HTTP server at host “accepts”
connection, notifying client

3. HTTP server receives request
message, replies with response
message containing requested
object

time

Non-persistent HTTP (HTTP/1.0)

7

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

Non-persistent HTTP (HTTP/1.0)

Single connection
per object
Useful at a time when web
pages contained 1 object: the
base HTML file.

How long does it take to transfer an
object with non-persistent HTTP?
i.e.: before your browser can load

the (entire) object?

Non-persistent HTTP transfer time
• Total delay = propagation + queueing +

transmission
• Response time for user

• = total round-trip delay
• = sum of forward and backward total delays

• Total round-trip delay for a “small” packet
called a Round Trip Time (RTT)
• Round-trip delays with zero transmission delay

• Assumptions:
• Small packets: TCP initiation packet, response,

HTTP request are all small
• No processing delays at the server
• RTT stable over time

• 2RTT + file transmission time per object

File
transmission
time
for the
response

initiate TCP
connection

RTT
request
file

RTT

entire
file
received

time time

Per-object overheads quickly add up

Modern
web
pages
have 100s
of objects
in them.

11

Suppose user
visits a page

with text and 10
images.

1a. HTTP client initiates TCP
connection to HTTP server

2. HTTP client sends HTTP
request message

1b. HTTP server at host “accepts”
connection, notifying client

3. HTTP server receives request
message, replies with response
message containing requested
object

time

Persistent HTTP (HTTP/1.1)

Connection: keep-alive

HTTP header introduced in

HTTP/1.1

12

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

The 10 objects can be requested over the same
TCP connection.

i.e., save an RTT per object (otherwise spent
opening a new TCP connection in HTTP/1.0)

4. HTTP server sends a response.

Server keeps the TCP
connection alive.

time

Persistent HTTP (HTTP/1.1)

Persistence vs. # of connections
• Persistence is distinct from the number of concurrent

connections made by a client

• Your browser has the choice to open multiple connections to a
server!
• Bounded by the HTTP specification to a small number (e.g., 5)

• Further, a single connection can have multiple object (HTTP)
requests in flight with persistent HTTP

Remembering Users
On the Web

15

So far, HTTP mechanisms considered stateless
• Each request processed independently at the server
• The server maintains no memory about past client requests

However, state, i.e., memory, about the user at the
server, is very useful!
• User authentication (e.g., gmail)
• Shopping carts (e.g., Amazon)
• Video recommendations (e.g., Netflix)
• Any user session state in general

HTTP: Remembering users

Familiar with these?

17

client server
http request msg + auth

http response +
Set-cookie: 1678

http request (no auth)
cookie: 1678

Personalized http
response

http request (no auth)
cookie: 1678

Personalized http
response

cookie-
specific
action

cookie-
specific
action

server
creates ID

1678 for user

entry in backend

database

access

ac
ce

ss

Cookie file

Amazon: 1678

Cookie file

Amazon: 1678

Cookie file

Amazon: 1678

one week later:

Cookies: Keeping user memory

Netflix: 436

Netflix: 436

Netflix: 436

Cookie
is

typically
opaque

to client.

18

Collaboration between client and server to track user state.

Four components:
1. cookie header line of HTTP response message
2. cookie header line in HTTP request message
3. cookie file kept on user endpoint, managed by user’s browser
4. back-end database maps cookie to user data at Web endpoint

Cookies come with an expiration date (yet another HTTP header!)

How cookies work

Cookies have many uses
• The good: Awesome user-facing functionality
• Shopping carts, auth, … very challenging or impossible without it

• The bad: Unnecessary recording of your activities on the site
• First-party cookies: performance statistics, user engagement, …

• The ugly: Tracking your activities across the Internet
• Third-party cookies (played by ad and tracking networks) to track your

activities across the Internet.
• Potentially personally identifiable information (PII)
• Ad networks target users with ads, may sell this info
• Scammers can target you too!

20

PSA: Cookies and Privacy
• Disable and delete unnecessary cookies by

default

• Suggested privacy-conscious browsers,
websites, tools:

• DuckDuckGo (search)
• Brave (browser)
• AdBlock Plus (extension)
• ToR (distract targeting)
• … assuming it doesn’t break the functions of the

site.
https://gdpr.eu/cookies/

Caching in HTTP

22

Web caches: Machines that remember web responses for a network

Why cache web responses?

• Reduce response time for client requests

• Reduce traffic on an institution’s access link

Caches can be implemented in the form of a proxy server

Web caches

23

Web caching using a proxy server

GET foo.html

Web Server
(also called
origin server in
this context)

Clients

Proxy
Server

GET foo.html

Store foo.html
on receiving

response

• You can configure a HTTP
proxy on your laptop’s network
settings.
• If you do, your browser sends

all HTTP requests to the proxy
(cache).
• Hit: cache returns object
• Miss: obtain object from

originating web server (origin
server) and return to client
• Also cache the object locallyThe Internet

Retu
rn

ca
ch

ed
 ob

jec
t!

24

• Conditional GET
guarantees cache content
is up-to-date while still
saves traffic and response
time whenever possible

• Date in the cache’s
request is the last time the
server provided in its
response header Last-
Modified

Cache/Client server
HTTP request msg

If-modified-since:
<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK
Last-modified:

<date>
DATA DATA DATA

object
modified

Caching in the HTTP protocol

X-Cache:
HIT

25

A global network of web caches
• Provisioned by ISPs and network operators
• Or content providers, like Netflix, Google, etc.

Uses (overlaps with uses of web caching in general)
• Reduce traffic on a network’s Internet connection, e.g.,

Rutgers
• Improve response time for users: CDN nodes are closer to

most users than origin servers
• Reduce bandwidth requirements on content provider
• Reduce $$ to maintain origin servers

Content Distribution Networks (CDNs)

Without CDN

• Problems:
• Huge bandwidth requirements for Rutgers
• Large propagation delays to reach users

26

128.6.4.2

DOMAIN NAME IP ADDRESS
www.yahoo.com 98.138.253.109

cs.rutgers.edu 128.6.4.2

www.google.com 74.125.225.243

www.princeton.edu 128.112.132.86

Cluster of Rutgers CS origin
servers (located in NJ, USA)

DNS

Clients
distributed
all over the
world

Where the CDN comes in
• Distribute content of the origin server over geographically distributed

CDN servers

• But how will users get to these CDN servers?

• Use DNS!
• DNS provides an additional layer of indirection
• Instead of domain -> IP addr, use domain -> DNS server (NS record!)

• The CDN runs its own DNS servers (CDN name servers) to perform
this redirection
• Send users to the “closest” CDN web server for a given domain

128.6.4.2

DOMAIN NAME IP ADDRESS
www.yahoo.com 98.138.253.109

cs.rutgers.edu 124.8.9.8 (NS record pointing
to CDN name server)

www.google.com 74.125.225.243

DOMAIN NAME IP ADDRESS
Cs.Rutgers.edu 12.1.2.3

Cs.Rutgers.edu 12.1.2.4

Cs.Rutgers.edu 12.1.2.5

Cs.Rutgers.edu 12.1.2.6

CDN Name Server (124.8.9.8)

12.1.2.3 12.1.2.4

12.1.2.512.1.2.6

Origin server

Client

CDN servers

With CDN

Custom
logic to
map ONE
domain
name to
one of
many IP
addresses!

NS record delegates the
choice of IP address to
the CDN name server.

Most requests go to CDN servers (caches).
CDN servers may request object from origin
Few client requests go directly to origin server

DNS
rep

ly
Popular
CDNs:
CloudFlare
Akamai
Level3
…

29

Summary of HTTP

•Request/response protocol
• ASCII-based human-readable message structures
• Improve performance using connection persistence,

caching, and CDN
• Enhanced stateful functionality using cookies
• Simple, highly-customizable protocol (just add headers)
• Protocol that forms of the basis of the web we enjoy

today!

Simple Mail Transfer Protocol

31

We’re all familiar with email.
How does it work?

33

Electronic Mail
Three major components:
1. User agents

• a.k.a. “mail reader”

• e.g., Applemail, Outlook

• Web-based user agents (ex: gmail)

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

34

2. Mail Servers
• Mailbox contains incoming messages for

user
• Message queue of outgoing (to be sent)

mail messages
• Sender’s mail server makes connection

to Receiver’s mail server
• IP address, port 25

3. SMTP protocol: client/server protocol
• Used to send messages
• Client: sending user agent or sending

mail server
• server: receiving mail server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Electronic Mail: Mail servers

35

1) Alice
(alice@rutgers.edu) uses
UA to compose message to
bob@nyu.edu

2) Alice’s UA sends message to
her mail server; message
placed in outgoing message
queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s incoming
mailbox

6) Sometime later, Bob invokes
his user agent to read
message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

Scenario: Alice sends message to Bob

Alice Bob

Rutgers mail server NYU mail server
A set of durable files

on the machine.
Persisted on disk.

Observations on these exchanges
• Mail servers are useful “always on” endpoints
• Receiving the email on behalf of Bob, should Bob’s machine be turned off
• Retrying the delivery of the email to Bob on behalf of Alice, should Bob’s

mail server be unavailable in the first attempt
• The same machine can act as client or server based on context
• Rutgers’s mail server is the server when Alice sends the mail
• It is the client when it sends mail to Bob’s mail server

• SMTP is push-based: info is pushed from client to server
• Contrast to HTTP or DNS where info is pulled from the server

Sample SMTP interaction
• A small demo

40

Sample SMTP interaction
220 hill.com SMTP service ready

HELO town.com
250 hill.com Hello town.com, pleased to meet you

MAIL FROM: <jack@town.com>
250 <jack@town.com>… Sender ok

RCPT TO: <jill@hill.com>
250 <jill@hill.com>… Recipient ok

DATA
354 Enter mail, end with “.” on a line by itself

Jill, I’m not feeling up to hiking today. Will you please fetch me a pail of water?
.

250 message accepted
QUIT

221 hill.com closing connection

MAIL command response codes

41

220: Service ready
250: Request command complete
354: Start mail input
421: Service not available

42

SMTP: protocol for exchanging email msgs
RFC 822: standard for text message format:

• header lines, e.g.,
• To:
• From:
• Subject:
different from SMTP commands!
(these would still be under “DATA”)

• body
• the “message”, ASCII characters only

header

body

blank
line

Mail message (stored on server) format

43

• MIME: multimedia mail extension, RFC 2045, 2056
• additional lines in msg header declare MIME content type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

Message format: multimedia extensions

CS 352
Mail: Access Protocols

CS 352, Lecture 5.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

44

http://www.cs.rutgers.edu/~sn624/352-S19

45

• SMTP: delivery/storage to receiver’s server
• Mail access protocol: retrieval from server
• POP: Post Office Protocol [RFC 1939]

• Client connects to POP3 server on TCP port 110
• IMAP: Internet Mail Access Protocol [RFC 1730]

• Client connects to TCP port 143
• HTTP: gmail, outlook, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

POP3 or IMAP4
Mail access protocols

Alice Bob

POP vs IMAP
• POP3
• Stateless server
• UA-heavy processing
• UA retrieves email from

server, then typically deleted
from server
• Latest changes are at the UA
• Simple protocol (list, retr, del

within a POP session)

• IMAP4
• Stateful server
• UA and server processing
• Server sees folders, etc.

which are visible to UAs
• Changes visible at the server
• Complex protocol

46

What about web-based email?
• Connect to mail servers via web browser
• Ex: gmail, outlook, etc.

• Browsers speak HTTP
• Email servers speak SMTP
• Need a bridge to retrieve email using HTTP

47

Web based email

48

HTTP server HTTP
server

SMTP
Client

SMTP
server

Internet

HTTP HTTP

49

Comparing SMTP with HTTP
• HTTP: pull
• SMTP: push

• both have ASCII command/response interaction, status codes

• HTTP: each object encapsulated in its own response msg
• SMTP: multiple objects sent in multipart msg

• HTTP: can put non-ASCII data directly in response
• SMTP: need ASCII-based encoding

50

More themes from app-layer protocols
• Separation of concerns. Examples:

• Content rendering for users (browser, UA) separate from protocol operations (mail
server)

• Reliable mail sending and receiving: mail UA doesn’t need to be “always on” to
send or receive email reliably

• In-band vs. out-of-band control:
• In-band: headers determine the actions of all the parties of the protocol
• There are protocols with out-of-band control, e.g., FTP

• Keep it simple until you really need complexity
• ASCII-based design; stateless servers. Then introduce:
• Cookies for HTTP state
• IMAP for email organization
• Security extensions (e.g., TLS)
• Different methods to set up and use underlying connections (e.g., persistence)

