CS 352
Internet Technology

Lecture 1: Introduction
http://www.cs.rutgers.edu/~sn624/352-S22
Srinivas Narayana
The Internet is an exciting place
The Internet has transformed everything

• How we communicate with other humans
• How we learn what’s going on in the world
• How we learn and acquire knowledge
• How we transact and do business
• How we entertain ourselves
• How espionage and war is conducted

• In short how we live, especially through a pandemic.
Internet growth

1995
35MM+ Internet Users
0.6% Population Penetration

2014
2.8B Internet Users
39% Population Penetration

2020
4.8B users
(61% of the world’s population)

https://www.broadbandsearch.net/blog/internet-statistics
Evolution of Internet applications

1992
ftp
Web
email

1996
chat
Games
IM
Yahoo!

2000
news
Blog
Search

2004
Music
itunes
Games
search

2008
Wikipedia
Craigslist
Youtube

2010-2020

2020--

Text-heavy
Multimodal media
Augment physical world
Replace phy world
We relied on the Internet to work

Data shows number of daily sessions in the US over a period in 2020. Source: nytimes
We relied on the Internet to “play”!

Data shows number of daily sessions in the US over a period in 2020. Source: nytimes
Threats on the Internet are growing, too

Source: CloudFlare blog
Internet Technology: This course

• The study of how the Internet is designed

• The Internet is an example of a computer network
Technology is cool.

Learn fundamental principles that underlie Internet technology.

So that you can use and build technology for fun, altruism, and profit.
What is a network?

• Carrier of information between two or more entities
• Entities may be hosts/endpoints (used interchangeably)
 • your laptop, cell phone, etc.
• Entities may also be devices in the middle of the network
 • For example, your WiFi router
• The interconnection between entities is any physical medium capable of carrying information: we call physical media links
 • Wireless links: cellular 4G/5G, wifi 802.11, bluetooth, satellite
 • Wired links: copper wire, lasers over optic fiber, coax cables
A single link multiple access network

- Send bits of data in **packets** or frames
- How do we differentiate among many receivers?
- Every endpoint as a link level **address**: also called a *MAC* address
- Packets have a destination address on them
- However, can’t have every computer in the world on the same link!
 - Physical limits on power / distance over which info travels over a single link
A single link multiple access network

Even on a single link, you need to worry about a few things:
- Converting digital data to physical signals over the medium (encode/decode)
- How do we decide who speaks? (medium access control problem)
- Detecting and correcting errors
A multi-link network

- Connect multiple links via routers
- Need to figure out how to move packets from one host to another host, e.g., how to reach google.com from your laptop
- Known as the routing problem
- Key Q: How should packets be moved from A to reach B?
In general, networks give no guarantees

- Packets may be lost, corrupted, reordered, on the way to the destination
 - Best effort delivery

- Advantage: The network becomes very simple to build
 - Don’t have to make it reliable
 - Don’t need to implement any performance guarantees
 - Don’t need to maintain packet ordering
 - Almost any medium can deliver individual packets
 - Example: RFC 1149: “IP Datagrams over Avian Carriers”

- The early Internet thrived since (transient) disruptions are okay
Guarantees for applications

• How should endpoints provide guarantees to applications?

• *Transport* software on the endpoint oversees implementing guarantees on top of an unreliable network

• Need to solve the *reliable data delivery* problem

• For some applications, also need *ordered delivery*
Sending data into a multi-link network

• How quickly should endpoints send data into a network?

• Known as the *congestion control* problem

• Congestion control algorithms at source endpoints react to remote network congestion. Part of the transport sw/hw stack.

• Key question: How to vary the sending rate based on network signals?
Sending data into a multi-link network

• How should a router transmit packets when network resources are scarce?

• Known as the packet scheduling problem

• Key question: which packet to transmit over a constrained network link, and when?
 • Related: the buffer management problem
Components of a network: Summary

• **Link**
 • Communication links for transmission

• **Host/Endpoint**
 • Computer running applications of end user

• **Router**
 • Computer for routing packets from input link to another output link

• **Network**
 • A group of hosts, links, routers capable of sending packets among its members
Course Logistics
About us

• Faculty Instructor: Srinivas Narayana
 • http://www.cs.rutgers.edu/~sn624
 • sn624@rutgers.edu
 • Office hours on Zoom (link on Canvas). Wed 9:30 – 10 am ET and Thu 2 - 3 pm ET
 • Lectures on Tue and Fri 8:30 – 9:50 am ET

• TAs and Recitations:
 • Section 5: Parvathi Mahesh pm850@scarletmail.rutgers.edu
 • Section 6: Chang Chen cc1547@cs.rutgers.edu

• Post questions on Piazza
Class philosophy

• We want you to learn and to be successful

• Ask questions on Piazza

• Attend office hours and recitations regularly to discuss material

• In summary, be proactive. Interact with us and with your fellow students and support each other

• Full video lectures from last offering (spr21) available
Grading

• 32% programming projects
• 28% problem sets
• 18% mid-terms (2 * 9% each)
• 12% final exam
• 10% lecture questions

• Schedule of projects, problem sets, exams, etc. available at https://www.cs.rutgers.edu/~sn624/352-S22/syllabus.html

• This course uses absolute grading. There is no curve
Programming projects (32%)

• Five programming projects
• Warmup/Socket programming intro (4 points)
• HTTP programming (7 points)
• Asynchronous sockets and load balancing (7 points)
• TCP analysis and configuration (7 points)
• IP network configuration (7 points)

• Tentative due dates 2/02, 2/16, 3/09, 3/30, and 4/20
 • Submit by 8 pm Eastern Time
Programming projects (32%)

• Work in the same group of two students throughout semester
 • Only change groups under extenuating circumstances, at the discretion of the instructor

• Program and short write-up with responses required

• Background needed to get started
 • Python (211/214 level)
 • Get comfortable using data structures (tuples, arrays, dictionaries)
 • Unix (login, navigating folders, permissions, etc.)

• Use ilab machines or VMs (links provided) to run and test

• Hand projects in on Canvas
Programming projects (32%)

• Please follow all project instructions carefully and exactly

• You will lose significant points if
 • We are unable to run your code
 • Your information (e.g., team member names and netids) is incorrect or incomplete
 • We do not receive your submission in a timely fashion
Problem sets (28%)

- 6 problem sets
- Work individually
- Hand in a PDF file with solutions on Canvas
- Due dates: 1/26, 2/09, 3/02, 3/23, 4/13, and 4/27
- 8 pm Eastern Time
Collaboration and Integrity policies

• Intellectual collaboration is welcome and encouraged
• Do
 • Ask questions on Piazza
 • Discuss projects and problem sets with each other
 • Read references (textbooks, Internet tutorials) widely
 • Acknowledge each other and all the references in problem sets & project reports
• Each problem set & project has a prompt on collaboration
 • Include who you talked to, references (including on the web) you consulted
 • Be as accurate and complete as possible
Collaboration and Integrity policies

• All your written (coded) work must be your (team’s) own
 • Understand the problem deeply and produce your own solutions

• Do not
 • blindly lift or incorporate other solutions
 • look at other people’s code or solutions
 • copy code from the web (e.g., other people’s GitHub projects)
 • post problem sets or projects (questions or solutions) on GitHub, Chegg, CourseHero, etc.

• Ask us for permission if you are ever in doubt
Written exams (30%)

- Two mid-terms (9 + 9 = 18%) and a final exam (12%)
- Cheat sheet (1 page letter paper, both sides) allowed
 - It must be handwritten by you
- Calculators are allowed
- (Stating the obvious) you cannot collaborate or google solutions during exams

- Mid-terms tentatively scheduled on 2/22 and 4/08 during class
- Notify me as early as possible if you must miss scheduled mid-terms or final
Writing answers

• In your answers to exams, problem sets, and project reports:

 • Be as clear and concise as possible

 • Vague and rambling answers will get zero credit
 • We must be able to understand your answer quickly

 • 25% credit for questions if you leave the answer blank or clearly write “I don’t know”
Lecture questions (10%)

• Each day of lecture, hand in responses on Canvas
 • Including today

• You can consult the lecture (and your notes)

• Responses due by 8 pm Eastern Time

• We will consider your 20 highest scores
Late policy

• Don’t be late

• If you must be late, inform us in advance

• If you cannot inform us in advance (e.g., medical), provide a doctor’s note or other allowable documentation

• Unexcused late submissions will lose a significant fraction of points
24/7 Grading Policy

• You may not dispute a grade or request a regrade before 24 hours or after 7 days of receiving it

• Please contact us if you have a legitimate regrading request:
 • After 24 hours of receiving the grade: Please take the time to review your case before contacting the instructors
 • Before 7 days have elapsed: we don’t want to forget what the test/project was all about!
Help, Accommodations, etc.

- We’ll make every effort to accommodate reasonable requests that support your learning better

- sn624@cs.rutgers.edu

- The course staff is here for you
Next steps

- Finish today’s lecture questions
- Look out for problem set 1 and project 1 released by Wed
- Enroll on Piazza

- Contact me if interested: independent study & research opps

- See you at Friday’s lecture