
CS 352
User Datagram Protocol

CS 352, Lecture 8.1
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S19

Transport

Application

Transport

Network

Host-to-Net …

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 X.25 ATM

HTTPS

Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Apps: useful user-level functions

Modularity through layering

HTTP FTP TFTPNV

TCP UDP

IP

Ether ATM WiFi…

• Best effort service. UDP
segments may be:
• Lost
• Delivered out of order to app

• UDP is connectionless
• Each UDP segment handled

independently of others (i.e. no
“memory” across packets)

• Suitable for one-off req/resp
• E.g., DNS uses UDP

• Also for loss-tolerant delay-
sensitive apps, e.g., video calling

Why are UDP’s guarantees even
okay?

Simple & low overhead compared
to TCP:
• No delays due to connection

establishment
• UDP can send data immediately

• No memory for connection
state at sender & receiver
• Small segment header
• UDP can blast away data as

fast as desired
• UDP has no “congestion control”

UDP: User Datagram Protocol [RFC 768]

UDP segment structure Length of
segment

(header + data)

application
data

(message)

source port # dest port #

length checksum

16 bits 16 bits

Link layer

Network

Transport

Applications Error
detection

info
(more to
come)

UDP segment structure

application
data

(message)

source port # dest port #

length checksum

Link layer

Network

Transport

Applications

…
Source IP address
Destination IP address
…

Review: UDP demultiplexing

application
data

(message)

source port # dest port #

length checksum

…
Source IP address
Destination IP address
…

Machine 1

Machine 1

Machine 1

IP 1

IP 2

Port 1
Port 2

…
…
…

Port 44262
…

Port 65535

socket() Ports

UDP packets
• A small demo

CS 352
UDP: Error Detection

CS 352, Lecture 8.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

10

http://www.cs.rutgers.edu/~sn624/352-S19

UDP: Best Effort Service
• Simple and low overhead transport: connectionless
• Data may be lost
• Data may be corrupted along the way (e.g., 1 -> 0)
• Data may be reordered
• However, simple error detection is possible.

UDP Error Detection
• Key idea: have sender compute a function over the data
• Store the result in the packet
• Receiver can check the function’s value in received packet

• An analogy: you’re sending a package of goodies and want
your recipient to know if goodies were leaked along the way

• Your idea: weigh the package; stamp the weight on the package
• Have the recipient weigh the package and cross-check the weight with

the stamped value

Error detection function
• Function must be easy to compute
• Function must capture the likely changes to the packet
• If the packet was corrupted through these likely changes, the function

value must change
• Function must be easy to verify

• UDP uses a function called a checksum
• Very common idea: used in multiple parts of networks and computer

systems

Sender:
• treat segment contents as

sequence of 16-bit integers
• checksum: addition (1’s

complement sum) of segment
contents
• sender puts checksum value

into UDP checksum field

Receiver:
• compute a checksum of the

received segment, including
the checksum in packet itself
• check if the resulting

(computed) checksum is 0
• NO – an error is detected
• YES – assume no error

UDP Checksum

• Very similar to regular (unsigned) binary addition.
• However, when adding numbers, a carryout from the most

significant bit needs to be added to the result
• Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

15

Computing 1’s complement sum

From the UDP specification (RFC 768)
• Checksum is the 16-bit one's complement of the one's

complement sum of a pseudo header of information from the IP
header, the UDP header, and the data, padded with zero octets
at the end (if necessary) to make a multiple of two octets.

• The pseudo header conceptually prefixed to the UDP header
contains the source address, the destination address, the
protocol, and the UDP length.

Some observations on checksums
• Checksums don’t detect all bit errors
• Consider (x, y) vs. (x – 1, y + 1) as adjacent 16-bit values in packet
• Analogy: you can’t assume the package hasn’t been meddled with if its

weight matches the one on the stamp. More smarts needed for that. J
• But it’s a lightweight method that works well in many cases

• Checksums are part of the packet; they can get corrupted too
• The receiver will just declare an error if it finds an error
• However, checksums don’t enable the receiver to detect where the error lies

or correct the error(s)
• Checksum is an error detection mechanism; not a correction mechanism.

Some observations on checksums
• Checksums are insufficient for reliable data delivery
• If a packet is lost, so is its checksum

• UDP and TCP use the same checksum function
• TCP also uses the lightweight error detection capability
• However, TCP has more mature mechanisms for generally reliable

data delivery (lots more to come on this)

Playing with checksums
• A small demo

Summary of UDP
• UDP is a thin shim around network layer’s best-effort delivery
• One-off request/response messages
• Lightweight transport for loss-tolerant delay-sensitive applications

• Provides basic multiplexing/demultiplexing for application
• No reliability, performance, or ordering guarantees
• Can do basic error detection (bit flips) using checksums
• Error detection is necessary to deliver data reliably but it is insufficient

