
CS 352
Reliability: Sliding Windows

CS 352, Lecture 10.1
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S19

Transport

Application

Transport

Network

Host-to-Net …

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 X.25 ATM

HTTPS

Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Apps: useful user-level functions

Modularity through layering

HTTP FTP TFTPNV

TCP UDP

IP

Ether ATM WiFi…

How do apps get perf guarantees?
• The network core provides no guarantees on packet delivery

• Transport software on the endpoint oversees implementing
guarantees on top of a best-effort network
• Three important kinds of guarantees
• Reliability
• Ordered delivery
• Resource sharing in the network core

Transmission
Control Protocol
(TCP)

Review: Stop-and-Wait Reliability
• Stop and wait: sender waits for an

ACK/RTO before sending another
packet

• Suppose no packets are dropped
• RTT = RTO = 100 milliseconds
• Packet size: 12 Kbit (1 K = 103)
• Link rate: 12 Mbit/s (1 M = 106)

• Rate of data transmission?
• one packet per RTT = 12Kbits / 100ms

= 120 Kbit/s

Sender Receiver

RTT

120 Kilobit/s == 1% of link rate

RTO

Making reliable transmissions efficient
• Terminology: unACKed data / packets in flight
• Data that has been sent, but not known (by the sender) to be received

• With just one packet in flight, the data rate is limited by the
packet delay (RTT) rather than available bandwidth (link rate)
• Larger the delay, slower the data rate, regardless of link rate

• Idea: Keep many packets in flight!
• More packets in flight improves throughput

• We say such protocols implement pipelined reliability

7

Why does pipelined reliability help?
Suppose sender has multiple, in-flight (yet-to-be-acknowledged) packets
New packets transmitted concurrently with in-flight packets
Packets and ACKs (of prior packets) are concurrently transmitted
è More data and ACKs transmitted within the same duration

Tracking packets in flight
• If there are N packets in flight, throughput

improves by N times relative to stop-and-
wait.
• Stop and wait: send 1 packet per RTT
• Pipelined: send N packets per RTT

• We term the in-flight data the window

• We term the amount of in-flight data the
window size

Sender Receiver

RTT

RTO

Sliding Windows

Window
• Window: Sequence numbers of in-flight data
• Window size: The amount of in-flight data (unACKed)

Sender’s
point of

view:

Window size = 3

Last seq # known to
be received at

receiver (ACK’ed)

Last sequence
sent

0 1 2 3 4 5 6 7 10

Sequence numbers
restart from 0 beyond
a point (finite space
on header)

Transmissions later in time

0

4

26
7

5

1

3

Sliding window (sender side)
• Suppose sequence number 2 is acknowledged by the receiver
• Sender can transmit sequence # 5
• The window “slides” forward

0 1 2 3 4 5 6 7 10

Window size = 3

Last seq # known to
be received at

receiver (ACK’ed)

Last sequence
sent

Sender’s
point of

view:
0

4

26
7

5

1

3

Sliding window (sender side)
• Suppose sequence number 2 is acknowledged by the receiver
• Sender can transmit sequence # 5
• The window “slides” forward

0 1 2 3 4 5 6 7 10

Window size = 3

Last seq # known to
be received at

receiver (ACK’ed)

Last sequence
sent

Sender’s
point of

view:
0

4

26
7

5

1

3

Sliding window (receiver side)
• Window of in-flight packets can look different between sender

and the receiver: receiver has more recent info of in-flight
• Receiver only accepts sequence #s as allowed by the current

receiver window

0 1 2 3 4 5 6 7 10

Window size = 3

Last seq # received
and ACK’ed by

receiver

Highest
sequence #

accepted

Receiver’s
point of

view:

Receiver will not
accept this seq #.
Packet dropped

Summary of sliding windows
• Sender and receiver can keep several packets of in-flight data
• Book-keep the sequence numbers using the window

• Windows slide forward as packets are ACKed (at receiver) and
ACKs are received (at sender)

• Common case: Improve throughput by sending and ACKing more
packets in the same duration

• Key challenge: how should the sender and receiver collaboratively
track the packets that must be retransmitted?

CS 352
Making Retransmissions Efficient

CS 352, Lecture 10.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

16

http://www.cs.rutgers.edu/~sn624/352-S19

Pipelined Reliability
• If there are N packets in flight, throughput

improves by N times relative to stop-and-wait.
• Stop and wait: send 1 packet per RTT
• Pipelined: send N packets per RTT

• Q1: how should sender efficiently identify which
pkts were dropped and (hence) retransmitted?

• Q2: how much data to keep in flight (i.e., what is
N?) to reduce drops/retransmits?

Sender Receiver

RTT

RTO

Q1. Identifying the Dropped
Packets

Q1: Identifying dropped packets
• Suppose 4 packets were sent, but one was

dropped. How does sender know which
one(s) were dropped?

• Recall: Receiver writes sequence numbers on
the ACK
• Sender infers which bytes were received

successfully using the ACK #s

• Q1.1: Should receivers ACK subsequent
packets upon detecting data loss?
• Q1.2: If so, what sequence number should

receiver put on the ACK?

Sender Receiver

RTT

RTO

Should this
ACK exist
???

SEQ 1
SEQ 2

SEQ 3
SEQ 4

ACK 2

ACK 3

ACK ??

Receiver strategies upon packet loss
Sender Receiver

1
2

3
4

5

ACK subsequent pkts?

Go-back-N Selective Repeat
What seq # on ACK?

Last pkt in order
Cumulative ACK

Seq # ranges
received so far
Selective ACK

No Yes

TCP’s default

Sliding Window with Go Back N
• When the receiver notices a missing or erroneous frame:

• It simply discards all frames with greater sequence numbers
• The receiver will send no ACK

• The sender will eventually time out and retransmit all the frames
in its sending window

Go back N

Discarded by
receiver

Frame with
error

RTO

AC
K

1

Time

Sender

Receiver

Maximum
window size = 8

Maximum
window size = 8

0

0 1

1
AC

K
2

2

E

3

D

4

D

2 3

2

AC
K

3

4 5 6

3 4 5

AC
K

4

AC
K

5

AC
K

6

6

AC
K

7

Go back N
• Go Back N can recover from erroneous or missing frames.

• But it is wasteful.

• If there are errors, the sender will spend time and network
bandwidth retransmitting data the receiver has already seen.

Selective repeat with cumulative ACK
Idea: sender should only retransmit dropped/corrupted segments.
• The receiver stores all the correct frames that arrive following

the bad one. (Note that the receiver requires a memory buffer
for each sequence number in its receiver window.)
• When the receiver notices a skipped sequence number, it keeps

acknowledging the first in-order sequence number it wants to
receive. This is what we mean by cumulative ACK.
• When the sender times out waiting for an acknowledgement, it

just retransmits the first unacknowledged packet, not all its
successors.
• Note that the RTO applies independently to each sequence #

Selective repeat with cumulative ACK

Buffered by
receiver

Frame with
error

RTO

AC
K

1

Time

Sender

Receiver

Maximum
window size = 8

Maximum
window size = 8

0

0 1

1
AC

K
2

2

E

3 4 2 5

2

AC
K

5

6

5

AC
K

6

6

AC
K

7

3 4

AC
K

2

AC
K

2

Selective repeat with selective ACK

Buffered by
receiver

Frame with
error

RTO

AC
K

1

Time

Sender

Receiver

Maximum
window size = 8

Maximum
window size = 8

0

0 1

1
AC

K
2

2

E

3 4 2 5

2

AC
K

5

6

5

AC
K

6

6

AC
K

7

3 4

AC
K

2
SA

CK
 0

--1
, 3

AC
K

2
SA

CK
 0

,--
1,

 3
--4

TCP: Cumulative & Selective ACKs
• Sender retransmits the seq #s it thinks aren’t

received successfully yet
• Pros & cons: selective vs. cumulative ACKs
• Precision of info available to sender
• Redundancy of retransmissions
• Packet header space
• Complexity (and bugs) in transport software

• On modern OSes, TCP uses selective ACKs
by default

Sender Receiver
1

2
3

4
2

3
4

5
5

Memory Buffers in the
Transport Layer

Receiver-side sockets need memory buffers
• Since TCP uses selective repeat, the receiver must buffer data that

is received out of order:
• e.g., hold packets so that only the “holes” (due to drops) need to be filled in

later, without having to retransmit packets that were received successfully

• Apps read from the receive-side socket buffer when you do a
recv() call.

• Even if data reliably received in order, applications may not always
read the data immediately
• What if you invoked recv() in your socket program infrequently (or never)?
• For the same reason, UDP sockets also have buffers

Sender-side sockets need memory buffers
• The possibility of packet retransmission in the future means that

data can’t be immediately discarded from the sender once
transmitted.

• Transport layer must wait for ACK of a piece of data before
reclaiming the memory for that data.

Q2. How much data to keep in
flight?

Q2: How much data to keep in flight?
• Challenging question! We want to increase throughput. But:
• The receiving app must keep up: otherwise, receiver socket buffer

will fill up. Once full, subsequent packets are dropped.
• Even if receiving app is fast, there must be sufficient buffering for

selective repeat, if some data is dropped/corrupted
• The network path must be able to keep up.
• We don’t want window to be so large that pkts dropped anyway
• Challenge: The sender must figure out where the bottleneck is:

receiving app? Socket buffer? A link along the network path?
• Flow control and congestion control

Inspecting TCP stack parameters
• A small demo

Info on (tuning) TCP stack parameters
• https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/

wkvm/wkvm_c_tune_tcpip.htm

• https://cloud.google.com/solutions/tcp-optimization-for-network-
performance-in-gcp-and-hybrid

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/wkvm/wkvm_c_tune_tcpip.htm
https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid

