CS 352
Reliability: Sliding Windows

CS 352, Lecture 10.1
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-S19

Transport

Application HTTPS| | FTP | | HTTP| | SMTP DNS
N4 e
Transport TCP ubP
Network /'P
Host-to-Net 802.11 X.25 ATM

Modularity through layering

Apps: useful user-level functions

Transport: provide guarantees to apps

Network: best-effort global pkt delivery

Link: best-effort local pkt delivery

How do apps get perf guarantees?

* The network core provides no guarantees on packet delivery

 Transport software on the endpoint oversees implementing
guarantees on top of a best-effort network

* Three important kinds of guarantees

+ Reliability . Transmission
* Ordered delivery Control Protocol
* Resource sharing in the network core (TCP)

Review: Stop-and-Wait Reliability

» Stop and wait: sender waits for an
ACK/RTO before sending another
packet

» Suppose no packets are dropped
« RTT = RTO = 100 milliseconds
« Packet size: 12 Kbit (1 K =109)
* Link rate: 12 Mbit/s (1 M = 106)

 Rate of data transmission?

« one packet per RTT = 12Kbits / 100ms
= 120 Kbit/s

Sender

Receiver

=

m

114

120 Kilobit/s ==

% of link rate

Making reliable transmissions efficient

« Terminology: unACKed data / packets in flight
« Data that has been sent, but not known (by the sender) to be received

« With just one packet in flight, the data rate is limited by the
packet delay (RTT) rather than available bandwidth (link rate)

 Larger the delay, slower the data rate, regardless of link rate

* |dea: Keep many packets in flight!
* More packets in flight improves throughput

* We say such protocols implement pipelined reliability

Why does pipelined reliability help?

Suppose sender has multiple, in-flight (yet-to-be-acknowledged) packets
New packets transmitted concurrently with in-flight packets

Packets and ACKs (of prior packets) are concurrently transmitted

= More data and ACKs transmitted within the same duration

<+— ACK packefts

(a) a stop-and-wait protocol in operation (b) a pipeyned protocol in operation

Tracking packets in flight

* If there are N packets in flight, throughput
improves by N times relative to stop-and-
wait.

« Stop and wait: send 1 packet per RTT
* Pipelined: send N packets per RTT

* We term the in-flight data the window

* We term the amount of in-flight data the
window size

Sender Receiver

;:D %
_|
_|
- \
Rm'

Sliding Windows

Window

» Window: Sequence numbers of in-flight data
* Window size: The amount of in-flight data (unACKed)
Sequence numbers

restart from O beyond
Sender’s ‘ ‘
2 3 4

a point (finite space
l on header)
point of 0

vView: 1)
Last seq # knownto | g6t sequence
be received at

sent U
receiver (ACK’ed - ’
() Transmissions later in time

Window size = 3

Sliding window (sender side)

« Suppose sequence number 2 is acknowledged by the receiver
e Sender can transmit sequence # 5
* The window “slides” forward

Window size = 3

Sender’s
point of
view:

Last seq # knownto | g6t sequence
be received at # sent -
receiver (ACK’ed)

Sliding window (sender side)

« Suppose sequence number 2 is acknowledged by the receiver
e Sender can transmit sequence # 5
* The window “slides” forward

Window size = 3

Sender’s
point of
view:

Last seq # known to | a5t sequence
be received at # sent
receiver (ACK’ed)

Sliding window (receiver side)

» Window of in-flight packets can look different between sender
and the receiver: receiver has more recent info of in-flight

* Receiver only accepts sequence #s as allowed by the current

receiver window . .
Window size = 3 Receiver will not

accept this seq #.
Packet dropped

Receiver’s
point of
view: 1
Last seq # received Highest Sender:
and ACK’ed by sequence # [IDIEIBEIEIOEDEADE

recelver acce pted Window = 31

Summary of sliding windows

» Sender and receiver can keep several packets of in-flight data
» Book-keep the sequence numbers using the window

* Windows slide forward as packets are ACKed (at receiver) and
ACKs are received (at sender)

« Common case: Improve throughput by sending and ACKing more
packets in the same duration

» Key challenge: how should the sender and receiver collaboratively
track the packets that must be retransmitted?

CS 352
Making Retransmissions Efficient

CS 352, Lecture 10.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

NNNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-S19

Pipelined Reliability

- If there are N packets in flight, throughput Sender ~ Receiver

improves by N times relative to stop-and-wait.
« Stop and wait: send 1 packet per RTT
 Pipelined: send N packets per RTT
-
« Q1: how should sender efficiently identify which
pkts were dropped and (hence) retransmitted?
- \
Rm'

« Q2: how much data to keep in flight (i.e., what is
N?) to reduce drops/retransmits?

Q1. Identifying the Dropped
Packets

Q1: Identifying dropped packets

» Suppose 4 packets were sent, but one was Sender Receiver
dropped. How does sender know which
one(s) were dropped?

» Recall: Receiver writes sequence numbers on
the ACK

« Sender infers which bytes were received
successfully using the ACK #s Should this

q
"¢ ACK exist
???

« Q1.1: Should receivers ACK subsequent
packets upon detecting data loss?

« Q1.2: If so, what sequence number should
receiver put on the ACK?

Recelver strategies upon packet loss

Sender Receiver
ACK subsequent pkts?

Nc/ N(es 2 3
i

Go-back-N Selective Repeat
What seq # on ACK? =

/

Last pkt in order
Cumulative ACK

Seq # ranges
received so far
Selective ACK

Sliding Window with Go Back N

* When the receiver notices a missing or erroneous frame:

* |t simply discards all frames with greater sequence numbers
* The receiver will send no ACK

* The sender will eventually time out and retransmit all the frames
In its sending window

Go back N

RTO
Sender 0 3 412 6
Maximum /’\
window size = 8 |
A
xl
2
I
I
Receiver D D 6
Maximum \ /
window size = 8 \V4
Discarded by
receiver
Frame with

error

Time

Go back N

* Go Back N can recover from erroneous or missing frames.
 But it is wasteful.

* |[f there are errors, the sender will spend time and network
bandwidth retransmitting data the receiver has already seen.

Selective repeat with cumulative ACK

ldea: sender should only retransmit dropped/corrupted segments.

* The receiver stores all the correct frames that arrive following
the bad one. (Note that the receiver requires a memory buffer
for each sequence number in its receiver window.)

* When the receiver notices a skipped sequence number, it keeps
acknowledging the first in-order sequence number it wants to
receive. This is what we mean by cumulative ACK.

* When the sender times out waiting for an acknowledgement, it
just retransmits the first unacknowledged packet, not all its
SUCCEeSSOrs.

* Note that the RTO applies independently to each sequence #

Selective repeat with cumulative ACK

RTO
Sender 0 3 4 6
Maximum A A
window size = 8 QU 1
S I
<1 N
I 5!
I <l
I I
1 1
Receiver 3 6
Maximum
window size = 8 L /
A4
Buffered by
receiver
Frame with Time

error

Selective repeat with selective ACK

RTO
™
Sender 0 3| - 6
Maximum LA A
window size = 8 N 5’ 1
X Ol I
O I I
wn N
I 5!
I <l
I I
I I
Receiver 3 6
Maximum
window size = 8 N\ /
A4
Buffered by
receiver

Time

Frame with
error

TCP: Cumulative & Selective ACKs

» Sender retransmits the seq #s it thinks aren’t Sender Receiver
received successfully yet 1

* Pros & cons: selective vs. cumulative ACKs 3
» Precision of info available to sender 4
* Redundancy of retransmissions 3
 Packet header space 4
« Complexity (and bugs) in transport software g

« On modern OSes, TCP uses selective ACKs o
by default

Memory Buffers in the
Transport Layer

Receiver-side sockets need memory buffers

» Since TCP uses selective repeat, the receiver must buffer data that
IS received out of order:

* e.g., hold packets so that only the “holes” (due to drops) need to be filled in
later, without having to retransmit packets that were received successfully

* Apps read from the receive-side socket buffer when you do a
recv() call.

* Even if data reliably received in order, applications may not always
read the data immediately
« What if you invoked recv() in your socket program infrequently (or never)?
 For the same reason, UDP sockets also have buffers

Sender-side sockets need memory buffers

* The possibility of packet retransmission in the future means that
data can’t be immediately discarded from the sender once
transmitted.

 Transport layer must wait for ACK of a piece of data before
reclaiming the memory for that data.

Q2. How much data to keep in
flight?

Q2: How much data to keep in flight?

 Challenging question! We want to increase throughput. But:

* The receiving app must keep up: otherwise, receiver socket buffer
will fill up. Once full, subsequent packets are dropped.

* Even if receiving app is fast, there must be sufficient buffering for
selective repeat, if some data is dropped/corrupted

* The network path must be able to keep up.
* We don’t want window to be so large that pkts dropped anyway

» Challenge: The sender must figure out where the bottleneck is:
receiving app? Socket buffer? A link along the network path?

* Flow control and congestion control

Inspecting TCP stack parameters

* A small demo

Info on (tuning) TCP stack parameters

* https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/
wkvm/wkvm_c tune_tcpip.htm

* https://cloud.google.com/solutions/tcp-optimization-for-network-
performance-in-gcp-and-hybrid

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/wkvm/wkvm_c_tune_tcpip.htm
https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid

