CS 352
Reliability: Stop and Wait

CS 352, Lecture 9.1
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-S19

Transport

Application HTTPS| | FTP | | HTTP| | SMTP DNS
N4 e
Transport TCP ubP
Network /'P
Host-to-Net 802.11 X.25 ATM

Modularity through layering

Apps: useful user-level functions

Transport: provide guarantees to apps

Network: best-effort global pkt delivery

Link: best-effort local pkt delivery

How do apps get perf guarantees?

* The network core provides no guarantees on packet delivery

 Transport software on the endpoint oversees implementing
guarantees on top of a best-effort network

* Three important kinds of guarantees

+ Reliability . Transmission
* Ordered delivery Control Protocol
* Resource sharing in the network core (TCP)

Reliable data delivery

Packet loss

Sender Receiver _
* How might a sender and

receiver ensure that data is
delivered reliably (despite
some packets being lost)?
* TCP uses three mechanisms
'

Coping with packet loss: (1) ACK

- Key idea: Receiver returns an Sender Recelver
acknowledgment (ACK) per packet
sent &
packet
ACK
* |If sender receives an ACK, it knows
that the receiver got the packet.

ACK

Coping with packet corruption: (1) ACK

 ACKs also work to detect packet Sender Recelver
corruption on the way to the receiver

* One possibility: A receiver could send a .
negative acknowledgment, or a NAK,; if it packet
receives a corrupted packet NAK

* Q: How to detect corrupted packet?
* One method: Checksum! &
. . packet

TCP only uses positive ACKSs. ACK

Coping with packet loss: (2) RTO

 What if a packet is dropped? Sender Receiver

« Key idea: Wait for a duration of time
(called retransmission timeout or
RTO) before re-sending the packet

* In TCP, the onus is on the sender to
retransmit lost data when ACKSs are

not received

* Note that retransmission works also if
ACKs are lost or delayed

How should the RTO be set?

» A good RTO must predict the round-trip time ~ Sender Receiver

(RTT) between the sender and receiver ———
» RTT: the time to send a single packet and receive \g»

a (corresponding) single ACK at the sender

* Intuition: If an ACK hasn’t returned, and our
(best estimate of) RTT has elapsed, the
packet was likely dropped.

 RTT can be measured directly at the sender.
No receiver involvement needed.

Coping with packet duplication

+ If ACKs delayed beyond the RTO, Sender Recelver
sender may retransmit the same data

* Receiver wouldn’t know that it just
received duplicate data from this
retransmitted packet

P S
OoLd |/

Duplicate
packet
eceived!
(Receiver
doesn’t
Know...)

« Add some identification to each
packet to help distinguish between
adjacent transmissions ACK

* This is known as the sequence number)

Coping with packet loss: (3) Sequence #s

» A bad scenario: Suppose an ACK was Sender Recelver

delayed beyond the RTO; sender ; 0
ended up retransmitting the packet. m\g»
: 3
At the receiver: sequence number v
helps disambiguate a fresh 2
transmission from a retransmission
« Sequence number same as earlier:

retransmission
* Fresh sequence number: fresh data

Coping with packet loss: (3) Sequence #s

» A good scenario: packet successfully ~Sender . Recelver
received and ACK returned within : Qo Receiver
RTO T knows

: O AC these are

. : v not

Sequence numbers of successively duplicate,

d

transmitted packets are different ‘\%» hecaUse
: I sequence

: numbers
v are
different

O

Coping with packet loss: (3) Sequence #s

- A good scenario: packet successfully Sender SEQ 0 Recelver

received and ACK returned within ‘\g» Receiver
RTO s knows

45'/%0/ these are
. not

[- v
Sequence numbers of successively duplicate,

transmitted packets are different ‘\%» hecaUse
: sequence

* Further, the receiver informs the W numbers
are

sender which packet was ACK’ed A .
using an ACK sequence number lfreren

Q: What is the seg# of third packet?

» Goal: Avoid ambiguity on which Sender Receiver
packet was received/ACK’ed from SEQO
both the sender and receiver’s ‘\g»
perspective : X
: O AC

* One p033|b|I|ty keep incrementing the j

seq #:2,3, . \%»

* Alternative: since seq # 0 was :/ACKJ/

successfully ACK’ed earlier, itis OKto |v_ =3
reuse seq #0 for next transmission. - 777

» Seq #s reused if enough time elapsed &

O.LE:I

Summary: Stop-and-Wait Reliability

» Sender sends a single packet, then Sender Receiver
waits for an ACK to know the packet
was successfully received. Then the
sender transmits the next packet.

SEQO

Y
- ACK O

1

* [f ACK is not received until a timeout
(RTO), sender retransmits the packet

\ SEQ 1
» Disambiguate duplicate vs. fresh

packets using sequence numbers
that change on “adjacent” packets

Retransmit

CS 352
Reliability: TCP Metadata

CS 352, Lecture 9.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-S19

Review: Stop-and-Wait Reliability

» Sender sends a single packet, then Sender Receiver
waits for an ACK to know the packet
was successfully received. Then the
sender transmits the next packet.

SEQO

Y
- ACK O

1

* [f ACK is not received until a timeout
(RTO), sender retransmits the packet

\ SEQ 1
» Disambiguate duplicate vs. fresh

packets using sequence numbers
that change on “adjacent” packets

Retransmit

Q1: Where are seq & ACK #s written to?

* Naturally, in the packet header!

TCP header structure

0 1 2 3

SOUFCepOrt,deStinat!On 01234567890123456789012345678901
port (connection
demultiplexing)

Sequence Number |
totetet—t—t—t—t—t—t—totot ettt —t—t—t—t ot ottt ettt —t—t =t =+ =+ —+
| Acknowledgment Number |

Size Of the TCP header +'+‘+‘+‘+‘+“i’a'i‘;‘i‘;‘|";‘i‘;‘||';'i'—+—+—+—+—+—+—+-+—+_+_+_+_+_+_+_.||.
(|n 32-b|t Words) | Offset| Reserved |R|C|s|s|Y|I]| Window |

|G|K[H|T|N|N] |

ot bt —t—t—F—t—t—t—t -ttt ottt —t—F—+
| Urgent Pointer |

R s Tttt =ttt bttt bttt —t—+—+
| Options | Padding |

Basic error detection
through checksums ettt

(Slmllar to U DF)) S S ST S S S S T g s ST T St S

TCP Header Format

Note that one tick mark represents one bit position.

TCP header structure

P . 0 1 2 3
|dentifies data in the 01234567890123456789012345678901
; S S S S T S A S S T S ST S ST SO SY ST S S M S ST S S
packet from sender’s \\i-u: | Destination Port |
. T —t—t—t— ——— S S S NS S
perspective] |
S S S S S —— —g S N S A S
TCP uses byte seq #s | |
TR S - s S S A MU NS
| Data |U|A|P|R|S|F| |
| O | Reserved |R|C|S|S|Y|I| Window |
o . | |G|K|H|T|N|N| |
Ident|f|es the data be|ng e e S S S S T S S S
| Checksum | Urgent Pointer |
ACKed from the RSOSSN M S T S S S S ST SO S ST S SRS MO S ST S S
. y . | Options | Padding |
recelver s perspecuve T S S S S S ST SE S S SY SRS TS T S S ST ST ST WY ST ST ST WU SO SRS WS S Y
data
l-+-l

TCP uses next seq # that
the receiver is expecting. TCP Header Format

Note that one tick mark represents one bit position.

A TCP exchange

* A small demo

