
CS 352
Reliability: Stop and Wait

CS 352, Lecture 9.1
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S19

Transport

Application

Transport

Network

Host-to-Net …

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 X.25 ATM

HTTPS

Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Apps: useful user-level functions

Modularity through layering

HTTP FTP TFTPNV

TCP UDP

IP

Ether ATM WiFi…

How do apps get perf guarantees?
• The network core provides no guarantees on packet delivery

• Transport software on the endpoint oversees implementing
guarantees on top of a best-effort network
• Three important kinds of guarantees
• Reliability
• Ordered delivery
• Resource sharing in the network core

Transmission
Control Protocol
(TCP)

Reliable data delivery

Packet loss
Sender Receiver

• How might a sender and
receiver ensure that data is
delivered reliably (despite
some packets being lost)?

• TCP uses three mechanisms

Coping with packet loss: (1) ACK
• Key idea: Receiver returns an

acknowledgment (ACK) per packet
sent

• If sender receives an ACK, it knows
that the receiver got the packet.

Sender Receiver

ACK
packet

ACK
packet

Coping with packet corruption: (1) ACK
• ACKs also work to detect packet

corruption on the way to the receiver
• One possibility: A receiver could send a

negative acknowledgment, or a NAK, if it
receives a corrupted packet
• Q: How to detect corrupted packet?

• One method: Checksum!

• TCP only uses positive ACKs.

Sender Receiver

NAK
packet

ACK
packet

Coping with packet loss: (2) RTO
• What if a packet is dropped?
• Key idea: Wait for a duration of time

(called retransmission timeout or
RTO) before re-sending the packet

• In TCP, the onus is on the sender to
retransmit lost data when ACKs are
not received

• Note that retransmission works also if
ACKs are lost or delayed

Sender Receiver

ACK

RTO

Retransmission

How should the RTO be set?
• A good RTO must predict the round-trip time

(RTT) between the sender and receiver
• RTT: the time to send a single packet and receive

a (corresponding) single ACK at the sender

• Intuition: If an ACK hasn’t returned, and our
(best estimate of) RTT has elapsed, the
packet was likely dropped.

• RTT can be measured directly at the sender.
No receiver involvement needed.

Sender Receiver

ACK

RTO

Coping with packet duplication
Sender Receiver

ACK

RTO

• If ACKs delayed beyond the RTO,
sender may retransmit the same data
• Receiver wouldn’t know that it just

received duplicate data from this
retransmitted packet

• Add some identification to each
packet to help distinguish between
adjacent transmissions
• This is known as the sequence number

Duplicate
packet
received!
(Receiver
doesn’t
know…)

Coping with packet loss: (3) Sequence #s
Sender Receiver

ACK

RTO

• A bad scenario: Suppose an ACK was
delayed beyond the RTO; sender
ended up retransmitting the packet.

• At the receiver: sequence number
helps disambiguate a fresh
transmission from a retransmission
• Sequence number same as earlier:

retransmission
• Fresh sequence number: fresh data

0

0

Coping with packet loss: (3) Sequence #s
Sender Receiver

RTO

• A good scenario: packet successfully
received and ACK returned within
RTO

• Sequence numbers of successively
transmitted packets are different

Receiver
knows
these are
not
duplicate,
because
sequence
numbers
are
different

SEQ 0

SEQ 1

ACK

RTO

Coping with packet loss: (3) Sequence #s
Sender Receiver

RTO

• A good scenario: packet successfully
received and ACK returned within
RTO

• Sequence numbers of successively
transmitted packets are different

• Further, the receiver informs the
sender which packet was ACK’ed
using an ACK sequence number

RTO

Receiver
knows
these are
not
duplicate,
because
sequence
numbers
are
different

ACKACK 0

ACK 1

SEQ 0

SEQ 1

Q: What is the seq# of third packet?
Sender Receiver

ACK 1

RTO

• Goal: Avoid ambiguity on which
packet was received/ACK’ed from
both the sender and receiver’s
perspective

• One possibility: keep incrementing the
seq #: 2, 3, …

• Alternative: since seq # 0 was
successfully ACK’ed earlier, it is OK to
reuse seq #0 for next transmission.
• Seq #s reused if enough time elapsed

SEQ 0

SEQ 1

ACK 0

???

RTO

Summary: Stop-and-Wait Reliability
• Sender sends a single packet, then

waits for an ACK to know the packet
was successfully received. Then the
sender transmits the next packet.

• If ACK is not received until a timeout
(RTO), sender retransmits the packet

• Disambiguate duplicate vs. fresh
packets using sequence numbers
that change on “adjacent” packets

Sender Receiver

RTT

RTO

SEQ 0

ACK 0

SEQ 1

Retransmit

CS 352
Reliability: TCP Metadata

CS 352, Lecture 9.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

18

http://www.cs.rutgers.edu/~sn624/352-S19

Review: Stop-and-Wait Reliability
• Sender sends a single packet, then

waits for an ACK to know the packet
was successfully received. Then the
sender transmits the next packet.

• If ACK is not received until a timeout
(RTO), sender retransmits the packet

• Disambiguate duplicate vs. fresh
packets using sequence numbers
that change on “adjacent” packets

Sender Receiver

RTT

RTO

SEQ 0

ACK 0

SEQ 1

Retransmit

Q1: Where are seq & ACK #s written to?
• Naturally, in the packet header!

TCP header structure
Source port, destination

port (connection
demultiplexing)

Size of the TCP header
(in 32-bit words)

Basic error detection
through checksums

(similar to UDP)

TCP header structure
Identifies data in the

packet from sender’s
perspective

TCP uses byte seq #s

Identifies the data being
ACKed from the

receiver’s perspective.
TCP uses next seq # that
the receiver is expecting.

A TCP exchange
• A small demo

