
CS 352
Ordered Delivery

CS 352, Lecture 11.1
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S19

Transport

Application

Transport

Network

Host-to-Net …

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 X.25 ATM

HTTPS

Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Apps: useful user-level functions

Modularity through layering

HTTP FTP TFTPNV

TCP UDP

IP

Ether ATM WiFi…

How do apps get perf guarantees?
• The network core provides no guarantees on packet delivery

• Transport software on the endpoint oversees implementing
guarantees on top of a best-effort network
• Three important kinds of guarantees
• Reliability
• Ordered delivery
• Resource sharing in the network core

Transmission
Control Protocol
(TCP)

Reordering packets at the receiver side
• Let’s suppose receiver gets packets 1, 2, and

4, but not 3 (dropped)

• Suppose you’re trying to download a Word
document containing a report

• What would happen if transport at the
receiver directly presents packets 1, 2, and 4
to the Word application?

Sender Receiver
1

2
3

4
1

2

4
5

Reordering at the receiver side
• Reordering can happen for a few reasons:
• Drops
• Packets taking different paths through a network

• Receiver needs a general strategy to ensure
that data is presented to the application in the
same order that the sender side pushed it
• Receiver uses two mechanisms:
• Sequence numbers
• Receiver socket buffer

• We’ve already seen the use of both of these
for reliability

Sender Receiver
1

2
3
4

1
2

4
53

Interaction between apps and TCP
• Sender deposits data in receiver socket

buffer

• An app with a TCP socket reads from the
TCP receive socket buffer
• e.g., when you do data = sock.recv()

• TCP receiver software only releases this
data to the application if the data is in
order relative to all other data already read
by the application

• This process is called TCP reassembly

application
process

TCP socket
receiver buffers

TCP
code

receiver protocol stack

from sender

recv()

TCP Reassembly

1 2

1 2 4

1 2 43

Application
can read

up to here

Sender/Net
writes here

Socket buffer memory on the receiver

Sequence numbers in the app’s stream

TCP uses byte sequence numbers

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time
e.g., send() call

100 150 180 240 273 310

Sequence numbers in the app’s stream

Packet boundaries aren’t important for TCP software
TCP is a stream-oriented protocol

(We use SOCK_STREAM when creating sockets)

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time
e.g., send() call

100 150 180 240 273 310

Sequence numbers in the app’s stream

… …

Data written by application over time
e.g., send() call

App does a recv()

1st
recv()

2nd
recv()

3rd
recv()

4th
recv() A recv() call may

return a part of a
packet, a full packet,
or multiple packets
together.

Implications of ordered delivery
• Packets cannot be delivered to the application if there is an in-

order packet missing from the receiver’s buffer
• The receiver can only buffer so much out-of-order data
• Subsequent out-of-order packets dropped (it doesn’t matter that those

packets successfully arrive at the receiver from the sender over the
network)

• TCP application-level throughput will suffer if there is too much
packet reordering in the network
• Data may reach the receiver
• But won’t be delivered to apps upon a recv()

Summary of TCP ordered delivery
• In-order delivery accomplished through socket buffer and TCP

reassembly at receiver

• TCP is a stream-oriented protocol, where the boundaries
between packets aren’t important

• Significant packet reordering reduces TCP application
throughput

CS 352
Flow Control

CS 352, Lecture 11.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

15

http://www.cs.rutgers.edu/~sn624/352-S19

Review: app and socket buffer interaction
• Sender deposits data in receiver

socket buffer
• An app with a TCP socket reads from

the TCP receive socket buffer
• e.g., when you do data = sock.recv()

• Buffers used for ordering & reliability
• Ordering: only release data to app

when data in order with everything else
app has read previously
• Reliability: avoid wasteful sender

retransmissions using selective repeat

application
process

TCP socket
receiver buffers

TCP
code

receiver protocol stack

from sender

recv()

But socket buffers can get full…
• Applications may read data slower than

the sender is pushing data in
• Example: what if an app infrequently or

never calls recv()?

• There may be too much reordering or
packet loss in the network
• What if the first few bytes of a window are

lost or delayed?

• Receivers can only buffer so much
before dropping subsequent data

application
process

TCP socket
receiver buffers

TCP
code

receiver protocol stack

from sender

Goal: avoid drops due to buffer fill
• Have a TCP sender only send as much

as the free buffer space available at the
receiver.
• Amount of free buffer varies over time
• TCP implements flow control
• Receiver’s ACK contains the amount of

data the sender can transmit without
running out the receiver’s socket buffer
• This number is called the advertised

window size

application
process

TCP socket
receiver buffers

TCP
code

receiver protocol stack

from sender

Flow control in TCP headers

TCP flow control
• Receiver advertises to sender (in the ACK)

how much free buffer is available
Sender Receiver

1
2

3
4

1
2

4
5

3

TCP flow control
• Subsequently, the sender’s sliding window

cannot be larger than this value
• Restriction on new sequence numbers that

can be transmitted
• Restriction on TCP sending rate

Sender Receiver
1

2
3

4
1

2

4
5

3

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Window <= Advertised window

Sender’s
view:

TCP flow control
• If receiver app is too slow reading data:
• receiver socket buffer fills up
• So, advertised window shrinks
• So, sender’s window shrinks
• So, sender’s sending rate reduces

Sender Receiver
1

2
3

4
1

2

4
5

3

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Window <= Advertised window

Sender’s
view:

TCP flow control

Flow control matches the sender’s
write speed to the receiver’s read
speed.

Sender Receiver
1

2
3

4
1

2

4
5

3

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Window <= Advertised window

Sender’s
view:

Sizing the receiver’s socket buffer
• Operating systems have a default receiver socket buffer size
• Listed among the parameters in sysctl –a | grep net.inet.tcp

on MAC, sysctl –a | grep net.ipv4.tcp on Linux

• If socket buffer is too small, sender can’t keep too many
packets in flight è lower throughput

• If socket buffer is too large, too much memory consumed per
socket

• How big should the receiver socket buffer be?

Sizing the receiver’s socket buffer
• Case 1: Suppose the receiving app is reading data too slowly:
• no amount of receiver buffer can prevent low sender throughput if the

connection is long-lived

Sizing the receiver’s socket buffer
• Case 2: Suppose the receiving app reads sufficiently fast on

average to match the sender’s writing speed.
• Assume the sender has a window of size W.
• The receiver must use a buffer of size at least W. Why?

• Captures two cases:
• (1) When the first sequence #s in the window are dropped
• The rest of the window must be buffered until the ACKs (of the rest of the

window) reach sender. Adv. window in ACKs reduces sender’s window
• (2) When the sender sends a burst of data of size W
• Receiver may not match the instantaneous rate of the sender

Summary of flow control
• A mechanism to keep buffers available at the receiver whenever

the sender transmits data

• Main function: match sender speed to receiver speed

• Socket buffer sizing is important for throughput

