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Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps
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How do apps get perf guarantees?
• The network core provides no guarantees on packet delivery

• Transport software on the endpoint oversees implementing 
guarantees on top of a best-effort network
• Three important kinds of guarantees
• Reliability
• Ordered delivery
• Resource sharing in the network core
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Reordering packets at the receiver side
• Let’s suppose receiver gets packets 1, 2, and 

4, but not 3 (dropped)

• Suppose you’re trying to download a Word 
document containing a report

• What would happen if transport at the 
receiver directly presents packets 1, 2, and 4 
to the Word application?
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Reordering at the receiver side
• Reordering can happen for a few reasons:
• Drops
• Packets taking different paths through a network

• Receiver needs a general strategy to ensure 
that data is presented to the application in the 
same order that the sender side pushed it
• Receiver uses two mechanisms:
• Sequence numbers 
• Receiver socket buffer

• We’ve already seen the use of both of these 
for reliability
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Interaction between apps and TCP
• Sender deposits data in receiver socket 

buffer

• An app with a TCP socket reads from the 
TCP receive socket buffer
• e.g., when you do data = sock.recv()

• TCP receiver software only releases this 
data to the application if the data is in 
order relative to all other data already read 
by the application

• This process is called TCP reassembly
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TCP Reassembly
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Sequence numbers in the app’s stream

TCP uses byte sequence numbers

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time
e.g., send() call
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Sequence numbers in the app’s stream

Packet boundaries aren’t important for TCP software
TCP is a stream-oriented protocol

(We use SOCK_STREAM when creating sockets)

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time
e.g., send() call
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Sequence numbers in the app’s stream

… …

Data written by application over time
e.g., send() call

App does a recv()

1st 
recv()

2nd 
recv()

3rd 
recv()

4th 
recv() A recv() call may 

return a part of a 
packet, a full packet, 
or multiple packets 
together.



Implications of ordered delivery
• Packets cannot be delivered to the application if there is an in-

order packet missing from the receiver’s buffer
• The receiver can only buffer so much out-of-order data
• Subsequent out-of-order packets dropped (it doesn’t matter that those 

packets successfully arrive at the receiver from the sender over the 
network)

• TCP application-level throughput will suffer if there is too much 
packet reordering in the network
• Data may reach the receiver
• But won’t be delivered to apps upon a recv()



Summary of TCP ordered delivery
• In-order delivery accomplished through socket buffer and TCP 

reassembly at receiver

• TCP is a stream-oriented protocol, where the boundaries 
between packets aren’t important

• Significant packet reordering reduces TCP application 
throughput
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Review: app and socket buffer interaction
• Sender deposits data in receiver 

socket buffer
• An app with a TCP socket reads from 

the TCP receive socket buffer
• e.g., when you do data = sock.recv()

• Buffers used for ordering & reliability
• Ordering: only release data to app 

when data in order with everything else 
app has read previously
• Reliability: avoid wasteful sender 

retransmissions using selective repeat
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But socket buffers can get full…
• Applications may read data slower than 

the sender is pushing data in
• Example: what if an app infrequently or 

never calls recv()?

• There may be too much reordering or 
packet loss in the network
• What if the first few bytes of a window are 

lost or delayed?

• Receivers can only buffer so much 
before dropping subsequent data
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Goal: avoid drops due to buffer fill
• Have a TCP sender only send as much 

as the free buffer space available at the 
receiver. 
• Amount of free buffer varies over time
• TCP implements flow control
• Receiver’s ACK contains the amount of 

data the sender can transmit without 
running out the receiver’s socket buffer
• This number is called the advertised 

window size
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Flow control in TCP headers



TCP flow control
• Receiver advertises to sender (in the ACK) 

how much free buffer is available
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TCP flow control
• Subsequently, the sender’s sliding window 

cannot be larger than this value
• Restriction on new sequence numbers that 

can be transmitted
• Restriction on TCP sending rate
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TCP flow control
• If receiver app is too slow reading data: 
• receiver socket buffer fills up
• So, advertised window shrinks
• So, sender’s window shrinks
• So, sender’s sending rate reduces
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TCP flow control

Flow control matches the sender’s 
write speed to the receiver’s read 
speed.
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Sizing the receiver’s socket buffer
• Operating systems have a default receiver socket buffer size
• Listed among the parameters in sysctl –a | grep net.inet.tcp

on MAC, sysctl –a | grep net.ipv4.tcp on Linux

• If socket buffer is too small, sender can’t keep too many 
packets in flight è lower throughput

• If socket buffer is too large, too much memory consumed per 
socket

• How big should the receiver socket buffer be?



Sizing the receiver’s socket buffer
• Case 1: Suppose the receiving app is reading data too slowly:
• no amount of receiver buffer can prevent low sender throughput if the 

connection is long-lived



Sizing the receiver’s socket buffer
• Case 2: Suppose the receiving app reads sufficiently fast on 

average to match the sender’s writing speed.  
• Assume the sender has a window of size W.
• The receiver must use a buffer of size at least W. Why?

• Captures two cases:
• (1) When the first sequence #s in the window are dropped 
• The rest of the window must be buffered until the ACKs (of the rest of the 

window) reach sender. Adv. window in ACKs reduces sender’s window
• (2) When the sender sends a burst of data of size W
• Receiver may not match the instantaneous rate of the sender



Summary of flow control
• A mechanism to keep buffers available at the receiver whenever 

the sender transmits data

• Main function: match sender speed to receiver speed

• Socket buffer sizing is important for throughput




