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How do apps get perf guarantees?
• The network core provides no guarantees on packet delivery

• Transport software on the endpoint oversees implementing 
guarantees on top of a best-effort network
• Three important kinds of guarantees
• Reliability
• Ordered delivery
• Resource sharing in the network core

Transmission 
Control Protocol 
(TCP)



Review: Congestion control so far
• Algorithm by which multiple endpoints 

efficiently and fairly share bottleneck link

• So far, we’ve looked at just efficiency.

• Steady state: ACK clocking (keep the 
pipe full, but don’t congest it)

• Getting to steady state:
• Slow start: exponential increase
• TCP New Reno: Additive increase
• TCP BBR: gain cycling & filters

TCP congestion control 
algorithm

Bottleneck link

Knobs:
Sending rate

Congestion window

Signals:
ACKs
Loss (RTOs), etc.



Goal of steady state operation

Sender Receiver

Send packet 
burst (as allowed 
by window) Receive data 

packet

Send ACKReceive ACK

Data

ACKs

(1) Keep transmissions 
ACK-clocked: Send new 
data on ACK

(2) Keep transmissions over the 
bottleneck link back to back



Steady state cwnd for a single flow
• Suppose the bottleneck link has rate C
• Suppose the propagation round-trip delay (propRTT) between 

sender and receiver is T
• Ignore transmission delays for this example; 
• Assume steady state: highest sending rate with no bottleneck 

congestion

• Q: how much data is in flight over a single RTT?

• C * T data i.e., amount of data unACKed at any point in time
• ACKs take time T to arrive (without any queueing). In the 

meantime, sender is transmitting at rate C



The Bandwidth-Delay Product
• C * T = bandwidth-delay product: 
• The amount of data in flight for a sender transmitting at the ideal rate during 

the ideal round-trip delay of a packet

• Note: this is just the amount of data “on the pipe”

Data

C * T 



The Bandwidth-Delay Product
• Q: What happens if cwnd > C * T?
• i.e., where are the rest of the in-flight packets?

• A: Waiting at the bottleneck router queues

Data

C * T 



Router buffers and the max cwnd
• Router buffer memory is finite: queues can only be so long
• If the router buffer size is B, there is at most B data waiting in the queue

• If cwnd increases beyond C * T + B, data is dropped!

Data

C * T 

B



Summary
• Bandwidth-Delay Product (BDP) governs the window size of a 

single flow at steady state

• The bottleneck router buffer size governs how much the cwnd
can exceed the BDP before packet drops occur
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Detecting packet loss
• So far, all the algorithms we’ve studied have a coarse loss 

detection mechanism: RTO timer expiration
• Let the RTO expire, drop cwnd all the way to 1 MSS

• Analogy: you’re driving a car
• You’re waiting until the next car in front is super close to you (RTO) and 

then hitting the brakes really hard (set cwnd := 1)
• Q: Can you see obstacles from afar and slow down proportionately?

• That is, can the sender see packet loss coming in advance?
• And reduce cwnd more gently?



Can we detect loss earlier than RTO?
• Key idea: use the information in the ACKs. How?

• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs
• Occur when network is reordering packets, or one (but not most) packets 

in the window were lost

• Reduce cwnd when you see many duplicate ACKs
• Consider many dup ACKs a strong indication that packet was lost
• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
• Make cwnd reduction gentler than setting cwnd = 1; recover faster



Fast Retransmit & Fast 
Recovery



Distinction: In-flight versus window
• So far, window and in-flight referred to the same data  
• Fast retransmit & fast recovery differentiate the two notions

0 1 2 3 4 5 6 7 10

Last cumulative 
ACK’ed seq #

Last transmitted 
seq #

cwnd = 6

0 1 2 3 4 5 6 7 10

inflight = 3

Triple duplicate ACKs
(assume subsequent 3 pieces of data 

were successfully received)

Sender’s 
view:

cwnd is the interval between the last cumulatively 
ACK’ed seq# and the last transmitted seq#

inflight is the data currently 
believed to be in flight.



TCP fast retransmit (RFC 2581)
• The fact that ACKs are coming means that data is getting delivered 

to the receiver, albeit with some loss.
• Note: Before the dup ACKs arrive, we assume inflight = cwnd

• TCP sender does two actions with fast retransmit



TCP fast retransmit (RFC 2581)
• (1) Reduce the cwnd and in-flight gently
• Don’t drop cwnd all the way down to 1 MSS

• Reduce the amount of in-flight data multiplicatively
• Set inflight à inflight / 2
• That is, set cwnd = (inflight / 2) + 3MSS
• This step is called multiplicative decrease
• Algorithm also sets ssthresh to inflight / 2



TCP fast retransmit (RFC 2581)
• Example: Suppose cwnd and inflight (before triple dup 

ACK) were both 8 MSS. 
• After triple dup ACK, reduce inflight to 4 MSS
• Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS

Last cumulative 
ACK’ed seq #

cwnd = inflight = 8

5

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in 
flight (dup ACK)

inflight = 4
cwnd = 7



TCP fast retransmit (RFC 2581)
• (2) The seq# from dup ACKs is immediately retransmitted

• That is, don’t wait for an RTO if there is sufficiently strong evidence 
that a packet was lost



TCP fast recovery (RFC 2581)
• Sender keeps the reduced inflight until a new ACK arrives
• New ACK: an ACK for the seq# that was just retransmitted
• May also include the (three or more) pieces of data that were subsequently 

delivered to generate the duplicate ACKs

• Conserve packets in flight: transmit some data over lossy periods 
(rather than no data, which would happen if cwnd := 1)



TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative 
ACK’ed seq #

cwnd = 6
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4

5

6 7 10

Assumed not in 
flight (dup ACK)



TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative 
ACK’ed seq #

cwnd = 7
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in 
flight (dup ACK)



TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative 
ACK’ed seq #

cwnd = 8
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in 
flight (dup ACK)



TCP fast recovery (RFC 2581)
• Eventually a new ACK arrives, acknowledging the retransmitted 

data and all data in between
• Deflate cwnd to half of cwnd before fast retransmit.
• cwnd and inflight are aligned and equal once again

• Perform additive increase from this point!
cwnd = 3
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

New ACK acknowledged this data
Last cumulative 

ACK’ed seq #



Additive Increase/Multiplicative Decrease

1K

Time

Triple duplicate ACK

Slow
 sta

rt

In-flight data

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

Switch to additive 
increase at cwnd = 
ssthresh = 64K

Perceived loss occurs at 
cwnd = 80K

(2) Set inflight 
= ssthresh = 40K

Additive 

increase
Additive 

increase

Fast retransmit: (1) retransmit dup-ACKed segment
Fast recovery keeps inflight stable until new ACK

New ACK RTO

RTO: window drops all 
the way to 1 MSS

Multiplicative 
decrease



TCP New Reno performs additive increase and 
multiplicative decrease of its congestion 

window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP 
algorithms, including BBR.

[It is necessary for fairness across TCP flows.]



Summary of TCP loss detection

Fast Retransmit
• Triple dup ACK: sufficiently 

strong signal that network has 
dropped data, before RTO
• Immediately retransmit data
• Multiplicatively decrease in-

flight data to half of its value

Fast Recovery
• Maintain this reduced amount of 

in-flight data as long as dup 
ACKs arrive
• Data is successfully getting 

delivered
• When new ACK arrives, do 

additive increase from there on

• Don’t wait for an RTO and then set the cwnd to 1 MSS
• Tantamount to waiting to get super close to the car in front and then 

jamming the brakes really hard
• Instead, react proportionately by sensing pkt loss in advance
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TCP timeout (RTO)
• Useful for reliable delivery and congestion control
• How to pick the RTO value?
• Too long: slow reaction to loss
• Too short: premature retransmissions which are wasteful

• Want: RTO must predict the upper bound of RTTs resulting from a 
successful packet + ACK
• Intuition: somehow use the observed RTT (sampleRTT)
• Can we just directly set the latest RTT as the RTO?

• No. RTT can vary significantly! 
• Intermittent congestion, path changes, signal quality changes on wireless 

channel, etc.



Estimate an “average” RTT
• Exponential weighted moving average (typical alpha = 1/8)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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EstimatedRTT = (1 - a)*EstimatedRTT + a*SampleRTT



Accounting for RTT variance
• RTT samples can have a large variance
• Use a safety margin in the RTO estimate to account for 

variance RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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TCP timeout computation

DevRTT = (1-b)*DevRTT +
b*|SampleRTT-EstimatedRTT|

(typically, b = 0.25)

RTO = EstimatedRTT + 4*DevRTT

average RTT safety margin

Conceptually, there is an RTO timer for each seq #.



Too many timers?
• Timers are expensive – we don’t want one per sequence #
• Interrupts, OS data structures, and book-keeping

• The TCP stack maintains just one “real” timer per connection
• When a packet is transmitted, its transmission time is recorded
• The only real timer in the system is the RTO for the first unACK’ed

segment
• Expiration interval: RTO

• If ACK before RTO fires: set timer for next unACK’ed segment, 
based on recorded transmission time of that segment
• If RTO fires: retransmit the segment, restart RTO timer



Retransmission ambiguity



Real RTT of a retransmitted segment?

ReceiverSender

RTO

RTT?

RTT?

ACK 
arrives

Retransmission 
ambiguity

Aside: problem would go 
away if packets had a flag to 
indicate retransmission, or a 
field to uniquely identify each 
transmission and its ACK
(TCP has neither)
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How to estimate RTT/RTO despite retxmit?
•One solution: Never update RTT measurements based on 

ACKs from retransmitted packets

• Problem: Sudden change in RTT, coupled with many 
retransmissions, can cause system to update RTT very late
• Ex: Primary path failure leads to a high-RTT secondary path

• If RTT estimates are not updated, the RTO estimate isn’t, 
and that leads to a host of other problems.
• Ex: Unnecessary retransmissions since RTOs needlessly expire
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Karn’s algorithm

•Use back-off as part of the sampleRTT computation
•Whenever packet loss (RTO), RTO is increased by a factor
• Conservatively assume that RTT may have increased since the 

last unambiguous RTTsamples were obtained
•Use this increased RTO as RTO estimate for the next 

segment 
• Don’t use the estimatedRTT from stale sampleRTT

•Only after an ACK is received for a successful transmission 
is the RTO timer set to a value obtained from 
EstimatedRTT



Summary
• RTO computation is an important part of TCP’s behavior under 

loss

• TCP uses both an average RTT as well as the variance to 
obtain a safe prediction of an upper bound of a successful RTT

• Resolve retransmission ambiguity under path changes by 
avoiding sampleRTT measurements and multiplicatively 
increasing the RTO each time 
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TCP connections need lots of bookkeeping
• Socket buffer memory

• Entries in connection lookup tables

• Data structures and parameters (e.g., sequence numbers) in 
the operating system kernel

• These resources can get expensive on machines running many 
connections, e.g., web servers



Handshake
• Before starting data transmission, TCP client 

and server perform a handshake and agree 
on parameters

• TCP is bidirectional: independent set of 
sequence numbers for each direction

• Sequence numbers start from a random 
initial value

• Specific TCP flags indicate connection 
initiation and acceptance

Client Server

Client 
app

Server 
app

connect()
accept()

Client à server seq #

Server à client seq #

SYN

SYN / ACK



TCP flags in the header



2-way handshake not enough
• Suppose the server receives the first SYN 

packet and decides to allocate all the 
resources needed for the connection.
• What happens if a malicious client sends a 

ton of SYN packets?
• Asymmetric work: client doesn’t need to 

allocate any resources of its own
• Just have to send a well-crafted packet

• However, server’s resources exhausted!
• SYN flood attack: a form of denial of service

Client Server

Client 
app

Server 
app

connect()
accept()

SYN
SYN
SYN
SYN
SYN



Consequences
• The server should not allocate resources upon 

receiving the first client message (SYN)

• The server cannot carry any application data in 
SYN/ACK
• Server hasn’t yet allocated all necessary resources

• Client cannot send any data in the SYN packet

• Recall: HTTP requires an RTT for the 
handshake before sending HTTP request

Client Server

Client 
app

Server 
app

connect()
accept()

SYN
SYN
SYN
SYN
SYN



Mitigating the denial of service problem
• Key idea: Make the client do more work before allocating server 

resources

• The client should send at least one more packet, responding to the 
data in the server’s SYN/ACK, before the server decides to call the 
connection established
• That is, before all required server resources like buffers are allocated

• Result: 3-way handshake

• Per-connection finite state machine tracks this process



TCP 3-way handshake
Client Server

CLOSED

SYN-SENT

connect()

LISTEN

SYN-RCVD

CLOSEDbind()
listen()

ESTAB

Send SYN
Upon receiving SYN

ESTAB Upon receiving ACK

Upon receiving 
SYN/ACK

SYN

ACK

SYN/ACK

Return from
connect()

accept()

Return from
accept()

Server 
resources 

only allocated 
at this point

Send SYN/ACK

Send ACK

This packet can contain 
application data!



§Client, server each close their side of connection
• send TCP segment with FIN bit = 1

• In general, TCP is full-duplex: both sides can send
• However, FIN is unidirectional: stop one side of the 

communication
• Respond to received FIN with ACK
• On receiving FIN, ACK can be combined with own FIN

• Simultaneous FIN exchanges can be handled

TCP: Closing a connection



Summary of TCP connection management
• TCP connections have associated resources: managing them 

requires book-keeping the establishment of a connection carefully

• Simple 2-way handshakes suffer from denial of service vulnerability
• Moral: don’t allocate resources on the first client message

• 3-way handshake mitigates this issue by making client work harder
• Client must send ACK to server’s SYN/ACK before server can handle data
• The cost: increased time before sending application data from client




