
CS 352
Bandwidth-Delay Product

CS 352, Lecture 13.1
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S19

Transport

Application

Transport

Network

Host-to-Net …

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 X.25 ATM

HTTPS

How do apps get perf guarantees?
• The network core provides no guarantees on packet delivery

• Transport software on the endpoint oversees implementing
guarantees on top of a best-effort network
• Three important kinds of guarantees
• Reliability
• Ordered delivery
• Resource sharing in the network core

Transmission
Control Protocol
(TCP)

Review: Congestion control so far
• Algorithm by which multiple endpoints

efficiently and fairly share bottleneck link

• So far, we’ve looked at just efficiency.

• Steady state: ACK clocking (keep the
pipe full, but don’t congest it)

• Getting to steady state:
• Slow start: exponential increase
• TCP New Reno: Additive increase
• TCP BBR: gain cycling & filters

TCP congestion control
algorithm

Bottleneck link

Knobs:
Sending rate

Congestion window

Signals:
ACKs
Loss (RTOs), etc.

Goal of steady state operation

Sender Receiver

Send packet
burst (as allowed
by window) Receive data

packet

Send ACKReceive ACK

Data

ACKs

(1) Keep transmissions
ACK-clocked: Send new
data on ACK

(2) Keep transmissions over the
bottleneck link back to back

Steady state cwnd for a single flow
• Suppose the bottleneck link has rate C
• Suppose the propagation round-trip delay (propRTT) between

sender and receiver is T
• Ignore transmission delays for this example;
• Assume steady state: highest sending rate with no bottleneck

congestion

• Q: how much data is in flight over a single RTT?

• C * T data i.e., amount of data unACKed at any point in time
• ACKs take time T to arrive (without any queueing). In the

meantime, sender is transmitting at rate C

The Bandwidth-Delay Product
• C * T = bandwidth-delay product:
• The amount of data in flight for a sender transmitting at the ideal rate during

the ideal round-trip delay of a packet

• Note: this is just the amount of data “on the pipe”

Data

C * T

The Bandwidth-Delay Product
• Q: What happens if cwnd > C * T?
• i.e., where are the rest of the in-flight packets?

• A: Waiting at the bottleneck router queues

Data

C * T

Router buffers and the max cwnd
• Router buffer memory is finite: queues can only be so long
• If the router buffer size is B, there is at most B data waiting in the queue

• If cwnd increases beyond C * T + B, data is dropped!

Data

C * T

B

Summary
• Bandwidth-Delay Product (BDP) governs the window size of a

single flow at steady state

• The bottleneck router buffer size governs how much the cwnd
can exceed the BDP before packet drops occur

CS 352
Detecting & Reacting to Losses

CS 352, Lecture 13.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

12

http://www.cs.rutgers.edu/~sn624/352-S19

Detecting packet loss
• So far, all the algorithms we’ve studied have a coarse loss

detection mechanism: RTO timer expiration
• Let the RTO expire, drop cwnd all the way to 1 MSS

• Analogy: you’re driving a car
• You’re waiting until the next car in front is super close to you (RTO) and

then hitting the brakes really hard (set cwnd := 1)
• Q: Can you see obstacles from afar and slow down proportionately?

• That is, can the sender see packet loss coming in advance?
• And reduce cwnd more gently?

Can we detect loss earlier than RTO?
• Key idea: use the information in the ACKs. How?

• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs
• Occur when network is reordering packets, or one (but not most) packets

in the window were lost

• Reduce cwnd when you see many duplicate ACKs
• Consider many dup ACKs a strong indication that packet was lost
• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
• Make cwnd reduction gentler than setting cwnd = 1; recover faster

Fast Retransmit & Fast
Recovery

Distinction: In-flight versus window
• So far, window and in-flight referred to the same data
• Fast retransmit & fast recovery differentiate the two notions

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

cwnd = 6

0 1 2 3 4 5 6 7 10

inflight = 3

Triple duplicate ACKs
(assume subsequent 3 pieces of data

were successfully received)

Sender’s
view:

cwnd is the interval between the last cumulatively
ACK’ed seq# and the last transmitted seq#

inflight is the data currently
believed to be in flight.

TCP fast retransmit (RFC 2581)
• The fact that ACKs are coming means that data is getting delivered

to the receiver, albeit with some loss.
• Note: Before the dup ACKs arrive, we assume inflight = cwnd

• TCP sender does two actions with fast retransmit

TCP fast retransmit (RFC 2581)
• (1) Reduce the cwnd and in-flight gently
• Don’t drop cwnd all the way down to 1 MSS

• Reduce the amount of in-flight data multiplicatively
• Set inflight à inflight / 2
• That is, set cwnd = (inflight / 2) + 3MSS
• This step is called multiplicative decrease
• Algorithm also sets ssthresh to inflight / 2

TCP fast retransmit (RFC 2581)
• Example: Suppose cwnd and inflight (before triple dup

ACK) were both 8 MSS.
• After triple dup ACK, reduce inflight to 4 MSS
• Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS

Last cumulative
ACK’ed seq #

cwnd = inflight = 8

5

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

inflight = 4
cwnd = 7

TCP fast retransmit (RFC 2581)
• (2) The seq# from dup ACKs is immediately retransmitted

• That is, don’t wait for an RTO if there is sufficiently strong evidence
that a packet was lost

TCP fast recovery (RFC 2581)
• Sender keeps the reduced inflight until a new ACK arrives
• New ACK: an ACK for the seq# that was just retransmitted
• May also include the (three or more) pieces of data that were subsequently

delivered to generate the duplicate ACKs

• Conserve packets in flight: transmit some data over lossy periods
(rather than no data, which would happen if cwnd := 1)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 6
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4

5

6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 7
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 8
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Eventually a new ACK arrives, acknowledging the retransmitted

data and all data in between
• Deflate cwnd to half of cwnd before fast retransmit.
• cwnd and inflight are aligned and equal once again

• Perform additive increase from this point!
cwnd = 3
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

New ACK acknowledged this data
Last cumulative

ACK’ed seq #

Additive Increase/Multiplicative Decrease

1K

Time

Triple duplicate ACK

Slow
 sta

rt

In-flight data

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

Switch to additive
increase at cwnd =
ssthresh = 64K

Perceived loss occurs at
cwnd = 80K

(2) Set inflight
= ssthresh = 40K

Additive

increase
Additive

increase

Fast retransmit: (1) retransmit dup-ACKed segment
Fast recovery keeps inflight stable until new ACK

New ACK RTO

RTO: window drops all
the way to 1 MSS

Multiplicative
decrease

TCP New Reno performs additive increase and
multiplicative decrease of its congestion

window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP
algorithms, including BBR.

[It is necessary for fairness across TCP flows.]

Summary of TCP loss detection

Fast Retransmit
• Triple dup ACK: sufficiently

strong signal that network has
dropped data, before RTO
• Immediately retransmit data
• Multiplicatively decrease in-

flight data to half of its value

Fast Recovery
• Maintain this reduced amount of

in-flight data as long as dup
ACKs arrive
• Data is successfully getting

delivered
• When new ACK arrives, do

additive increase from there on

• Don’t wait for an RTO and then set the cwnd to 1 MSS
• Tantamount to waiting to get super close to the car in front and then

jamming the brakes really hard
• Instead, react proportionately by sensing pkt loss in advance

CS 352
Computing the Retransmit Timeout

CS 352, Lecture 13.3
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

30

http://www.cs.rutgers.edu/~sn624/352-S19

TCP timeout (RTO)
• Useful for reliable delivery and congestion control
• How to pick the RTO value?
• Too long: slow reaction to loss
• Too short: premature retransmissions which are wasteful

• Want: RTO must predict the upper bound of RTTs resulting from a
successful packet + ACK
• Intuition: somehow use the observed RTT (sampleRTT)
• Can we just directly set the latest RTT as the RTO?

• No. RTT can vary significantly!
• Intermittent congestion, path changes, signal quality changes on wireless

channel, etc.

Estimate an “average” RTT
• Exponential weighted moving average (typical alpha = 1/8)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

EstimatedRTT = (1 - a)*EstimatedRTT + a*SampleRTT

Accounting for RTT variance
• RTT samples can have a large variance
• Use a safety margin in the RTO estimate to account for

variance RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

TCP timeout computation

DevRTT = (1-b)*DevRTT +
b*|SampleRTT-EstimatedRTT|

(typically, b = 0.25)

RTO = EstimatedRTT + 4*DevRTT

average RTT safety margin

Conceptually, there is an RTO timer for each seq #.

Too many timers?
• Timers are expensive – we don’t want one per sequence #
• Interrupts, OS data structures, and book-keeping

• The TCP stack maintains just one “real” timer per connection
• When a packet is transmitted, its transmission time is recorded
• The only real timer in the system is the RTO for the first unACK’ed

segment
• Expiration interval: RTO

• If ACK before RTO fires: set timer for next unACK’ed segment,
based on recorded transmission time of that segment
• If RTO fires: retransmit the segment, restart RTO timer

Retransmission ambiguity

Real RTT of a retransmitted segment?

ReceiverSender

RTO

RTT?

RTT?

ACK
arrives

Retransmission
ambiguity

Aside: problem would go
away if packets had a flag to
indicate retransmission, or a
field to uniquely identify each
transmission and its ACK
(TCP has neither)

38

How to estimate RTT/RTO despite retxmit?
•One solution: Never update RTT measurements based on

ACKs from retransmitted packets

• Problem: Sudden change in RTT, coupled with many
retransmissions, can cause system to update RTT very late
• Ex: Primary path failure leads to a high-RTT secondary path

• If RTT estimates are not updated, the RTO estimate isn’t,
and that leads to a host of other problems.
• Ex: Unnecessary retransmissions since RTOs needlessly expire

39

Karn’s algorithm

•Use back-off as part of the sampleRTT computation
•Whenever packet loss (RTO), RTO is increased by a factor
• Conservatively assume that RTT may have increased since the

last unambiguous RTTsamples were obtained
•Use this increased RTO as RTO estimate for the next

segment
• Don’t use the estimatedRTT from stale sampleRTT

•Only after an ACK is received for a successful transmission
is the RTO timer set to a value obtained from
EstimatedRTT

Summary
• RTO computation is an important part of TCP’s behavior under

loss

• TCP uses both an average RTT as well as the variance to
obtain a safe prediction of an upper bound of a successful RTT

• Resolve retransmission ambiguity under path changes by
avoiding sampleRTT measurements and multiplicatively
increasing the RTO each time

CS 352
TCP Connection Management

CS 352, Lecture 13.4
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

42

http://www.cs.rutgers.edu/~sn624/352-S19

TCP connections need lots of bookkeeping
• Socket buffer memory

• Entries in connection lookup tables

• Data structures and parameters (e.g., sequence numbers) in
the operating system kernel

• These resources can get expensive on machines running many
connections, e.g., web servers

Handshake
• Before starting data transmission, TCP client

and server perform a handshake and agree
on parameters

• TCP is bidirectional: independent set of
sequence numbers for each direction

• Sequence numbers start from a random
initial value

• Specific TCP flags indicate connection
initiation and acceptance

Client Server

Client
app

Server
app

connect()
accept()

Client à server seq #

Server à client seq #

SYN

SYN / ACK

TCP flags in the header

2-way handshake not enough
• Suppose the server receives the first SYN

packet and decides to allocate all the
resources needed for the connection.
• What happens if a malicious client sends a

ton of SYN packets?
• Asymmetric work: client doesn’t need to

allocate any resources of its own
• Just have to send a well-crafted packet

• However, server’s resources exhausted!
• SYN flood attack: a form of denial of service

Client Server

Client
app

Server
app

connect()
accept()

SYN
SYN
SYN
SYN
SYN

Consequences
• The server should not allocate resources upon

receiving the first client message (SYN)

• The server cannot carry any application data in
SYN/ACK
• Server hasn’t yet allocated all necessary resources

• Client cannot send any data in the SYN packet

• Recall: HTTP requires an RTT for the
handshake before sending HTTP request

Client Server

Client
app

Server
app

connect()
accept()

SYN
SYN
SYN
SYN
SYN

Mitigating the denial of service problem
• Key idea: Make the client do more work before allocating server

resources

• The client should send at least one more packet, responding to the
data in the server’s SYN/ACK, before the server decides to call the
connection established
• That is, before all required server resources like buffers are allocated

• Result: 3-way handshake

• Per-connection finite state machine tracks this process

TCP 3-way handshake
Client Server

CLOSED

SYN-SENT

connect()

LISTEN

SYN-RCVD

CLOSEDbind()
listen()

ESTAB

Send SYN
Upon receiving SYN

ESTAB Upon receiving ACK

Upon receiving
SYN/ACK

SYN

ACK

SYN/ACK

Return from
connect()

accept()

Return from
accept()

Server
resources

only allocated
at this point

Send SYN/ACK

Send ACK

This packet can contain
application data!

§Client, server each close their side of connection
• send TCP segment with FIN bit = 1

• In general, TCP is full-duplex: both sides can send
• However, FIN is unidirectional: stop one side of the

communication
• Respond to received FIN with ACK
• On receiving FIN, ACK can be combined with own FIN

• Simultaneous FIN exchanges can be handled

TCP: Closing a connection

Summary of TCP connection management
• TCP connections have associated resources: managing them

requires book-keeping the establishment of a connection carefully

• Simple 2-way handshakes suffer from denial of service vulnerability
• Moral: don’t allocate resources on the first client message

• 3-way handshake mitigates this issue by making client work harder
• Client must send ACK to server’s SYN/ACK before server can handle data
• The cost: increased time before sending application data from client

