CS 352
Bandwidth-Delay Product

CS 352, Lecture 13.1
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-S19

Transport

Application HTTPS| | FTP | | HTTP| | SMTP DNS
N4 e
Transport TCP ubP
Network /'P
Host-to-Net 802.11 X.25 ATM

How do apps get perf guarantees?

* The network core provides no guarantees on packet delivery

 Transport software on the endpoint oversees implementing
guarantees on top of a best-effort network

* Three important kinds of guarantees

* Reliability . Transmission
* Ordered delivery Control Protocol
* Resource sharing in the network core (TCP)

Review: Congestion control so far

* Algorithm by which multiple endpoints
efficiently and fairly share bottleneck link TCP congestion control
algorithm

» So far, we've looked at just efficiency.

Signals: Knobs:
ACKs Sending rate
 Steady state: ACK clocking (keep the Loss (RTOs), etc. Congestion window

pipe full, but don’t congest it)

- Getting to steady state: Bottleneck link

« Slow start: exponential increase
 TCP New Reno: Additive increase
« TCP BBR: gain cycling & filters

Goal of steady state operation

(2) Keep transmissions over the

Send packet bottleneck link back to back
burst (as allowed ,
by window) Receive data
—_—— packet
(1) Keep transmissions
ACK-clocked: Send new Datq —————p
data on ACK
Sender Receiver
Receive ACK Send ACK
—— A\ CKs

Steady state cwnd for a single flow

« Suppose the bottleneck link has rate C

* Suppose the propagation round-trip delay (propRTT) between
sender and receiveris T

* Ignore transmission delays for this example;

» Assume steady state: highest sending rate with no bottleneck
congestion

* Q: how much data is in flight over a single RTT?

« C * T data i.e., amount of data unACKed at any point in time

* ACKs take time T to arrive (without any queueing). In the
meantime, sender is transmitting at rate C

The Bandwidth-Delay Product

* C * T = bandwidth-delay product:

« The amount of data in flight for a sender transmitting at the ideal rate during
the ideal round-trip delay of a packet

 Note: this is just the amount of data “on the pipe”

Data —

C*T

The Bandwidth-Delay Product

* Q: What happens if cwnd >C * T?
 i.e., where are the rest of the in-flight packets?

* A: Waiting at the bottleneck router queues

Router buffers and the max cwnd

» Router buffer memory is finite: queues can only be so long
* |f the router buffer size is B, there is at most B data waiting in the queue

* If cwnd increases beyond C * T + B, data is dropped!

Qo &

B

Data —

e —
C*T

Summary

« Bandwidth-Delay Product (BDP) governs the window size of a
single flow at steady state

* The bottleneck router buffer size governs how much the cwnd
can exceed the BDP before packet drops occur

CS 352
Detecting & Reacting to Losses

CS 352, Lecture 13.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

NNNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-S19

Detecting packet loss

 So far, all the algorithms we’ve studied have a coarse loss
detection mechanism: RTO timer expiration
* Let the RTO expire, drop cwnd all the way to 1 MSS

* Analogy: you're driving a car
« You're waiting until the next car in front is super close to you (RTO) and
then hitting the brakes really hard (set cwnd := 1)

« Q: Can you see obstacles from afar and slow down proportionately?

 That is, can the sender see packet loss coming in advance?
« And reduce cwnd more gently?

Can we detect loss earlier than RTO?

« Key idea: use the information in the ACKs. How?

» Suppose successive (cumulative) ACKs contain the same ACK#

« Also called duplicate ACKs

« Occur when network is reordering packets, or one (but not most) packets
In the window were lost

« Reduce cwnd when you see many duplicate ACKs
« Consider many dup ACKs a strong indication that packet was lost
 Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
« Make cwnd reduction gentler than setting cwnd = 1; recover faster

Fast Retransmit & Fast
Recovery

Distinction: In-flight versus window

« So far, window and in-flight referred to the same data
« Fast retransmit & fast recovery differentiate the two notions

cwnd =6 inflight = 3
—>

+t—>

Ul 0 1 2 3 45 6 7 0 1
VIEW!

01 23 45 6 7 0 1

t t —_
Triple duplicate ACKs
(assume subsequent 3 pieces of data

were successfully received)

cwnd Is the interval between the last cumulatively inflight is the data currently
ACK’ed seg# and the last transmitted seq# believed to be in flight.

Last cumulative Last transmitted
ACK’ed seq # seq #

TCP fast retransmit (RFC 2581)

* The fact that ACKs are coming means that data is getting delivered
to the receiver, albeit with some loss.

* Note: Before the dup ACKs arrive, we assume inflight = cwnd

« TCP sender does two actions with fast retransmit

TCP fast retransmit (RFC 2581)

* (1) Reduce the cwnd and in-flight gently
« Don’t drop cwnd all the way down to 1 MSS

* Reduce the amount of in-flight data multiplicatively
« Set inflight - inflight / 2
 Thatis, setcwnd = (inflight / 2) + 3MSS
* This step is called multiplicative decrease
 Algorithm also sets ssthresh to inflight / 2

TCP fast retransmit (RFC 2581)

« Example: Suppose cwnd and inflight (before triple dup
ACK) were both 8 MSS.

« After triple dup ACK, reduce inflight to 4 MSS
« Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS

d = inflight = 8 I:> inflight = 4
cwnd = 1nflig = cwnd = 7

01 23 45 6 7 01 23 45 6 7 0 1

t

Last cumulative Assumed not in
ACK’ed seq # flight (dup ACK)

TCP fast retransmit (RFC 2581)

* (2) The seg# from dup ACKs is immediately retransmitted

* That is, don’t wait for an RTO if there is sufficiently strong evidence
that a packet was lost

TCP fast recovery (RFC 2581)

» Sender keeps the reduced inflight until a new ACK arrives
 New ACK: an ACK for the seg# that was just retransmitted

« May also include the (three or more) pieces of data that were subsequently
delivered to generate the duplicate ACKs

» Conserve packets in flight: transmit some data over lossy periods
(rather than no data, which would happen if cwnd = 1)

TCP fast recovery (RFC 2581)

« Keep incrementing cwnd by 1 MSS for each dup ACK

cwnd = 6
inflight = 3
4+t

0123 45 6 7 01 23 45 6 7 0 1

Last cumulative Assumed not in
ACK’ed seq # flight (dup ACK)

TCP fast recovery (RFC 2581)

« Keep incrementing cwnd by 1 MSS for each dup ACK

cwnd = 7
inflight = 3

4+
0123 45 6 7 01 23 45 6 7 0 1

Last cumulative Assumed not in
ACK’ed seq # flight (dup ACK)

TCP fast recovery (RFC 2581)

« Keep incrementing cwnd by 1 MSS for each dup ACK

cwnd = 8
inflight = 3
S EE—

0123 45 6 7 01 23 45 6 7 0 1

Last cumulative Assumed not in
ACK’ed seq # flight (dup ACK)

TCP fast recovery (RFC 2581)

» Eventually a new ACK arrives, acknowledging the retransmitted
data and all data in between

 Deflate cwnd to half of cwnd before fast retransmit.
 cwnd and inflight are aligned and equal once again

» Perform additive increase from this point!

cwnd = 3
inflight = 3

01 23 45 6 7 01 23 45 6 7 0 1

Last cumulative _
ACK’ed seq # New ACK acknowledged this data

Additive Increase/Multiplicative Decrease
Say MSS =1 KByte
Default ssthresh = 64KB = 64 MSS

Triple duplicate ACK

Perceived loss occurs at
cwnd = 80K
Switch to addi

tive New ACK
increase at cwnd =

ssthresh = 64K

RTO

| dd\’{\\'e g/lultlpllcatlve | | /
In-flightdata | @ =eseeens e N (©25° ecrease SWNE I RTO: window drops all
NG 2° | thewayto1MSS
& \(\0(6 I
\@' llllllllllllllllllll l
0$6 (2) Set inflight Fast retransmit: (1) retransmitidup-ACKed segment
> = ssthresh = 40K Fast recovery keeps infligh',t stable until new ACK
1K

TCP New Reno performs additive increase and
multiplicative decrease of its congestion
window.

In short, we often refer to this as AIMD.
Multiplicative decrease is a part of all TCP

algorithms, including BBR.
[It Is necessary for fairness across TCP flows.]

Summary of TCP loss detection

« Don’t wait for an RTO and then set the cwnd to 1 MSS
Tantamount to waiting to get super close to the car in front and then
jamming the brakes really hard

* Instead, react proportionately by sensing pkt loss in advance

Fast Retransmit Fast Recovery
e Triple dup ACK: sufficiently « Maintain this reduced amount of
strong signal that network has in-flight data as long as dup
dropped data, before RTO ACKs arrive
» Immediately retransmit data ' ggti%fezuccessm”y getting

« Multiplicatively decrease in-

flight data to half of its value ~ ° When new ACK arrives, do

additive increase from there on

CS 352
Computing the Retransmit Timeout

CS 352, Lecture 13.3
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

NNNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-S19

TCP timeout (RTO)

 Useful for reliable delivery and congestion control

* How to pick the RTO value?
* Too long: slow reaction to loss
« Too short: premature retransmissions which are wasteful

« Want: RTO must predict the upper bound of RTTs resulting from a
successful packet + ACK

* Intuition: somehow use the observed RTT (sampleRTT)
« Can we just directly set the latest RTT as the RTO?

* No. RTT can vary significantly!

* Intermittent congestion, path changes, signal quality changes on wireless
channel, etc.

Estimate an “average” RTT

« Exponential weighted moving average (typical alpha = 1/8)
EstimatedRTT = (1 - a)*EstimatedRTT + a*SampleRTT

350 -

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr ,

/(E 300 1
©
C
: \ i
8 250 1] ~ N {T
E
200
|_
o
& sampleRTT
EstimatedRTT

100 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

—e— SampleRTT —@— Estimated RTT

Accounting for RTT variance

 RTT samples can have a large variance

« Use a safety margin in the RTO estimate to account for
variance

350 -

L 4 *
300 \
7 250 2 4 A ﬂ

)

=
—a
—

RTT (millisecond

150

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—e— SampleRTT —#&— Estimated RTT

TCP timeout computation

DevRTT = (1-fB)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

~ N

RTO = EstimatedRTT + 4*DevRTT

| 1

average RTT safety margin

Conceptually, there is an RTO timer for each seq #.

Too many timers?

* Timers are expensive — we don’t want one per sequence #
* Interrupts, OS data structures, and book-keeping

* The TCP stack maintains just one “real” timer per connection
 When a packet is transmitted, its transmission time is recorded

* The only real timer in the system is the RTO for the first unACK’ed
segment

 Expiration interval: RTO

* If ACK before RTO fires: set timer for next unACK’ed segment,
based on recorded transmission time of that segment

* If RTO fires: retransmit the segment, restart RTO timer

Retransmission ambiguity

Real RTT of a retransmitted segment?

Sender Receiver

N ek bl T
& / RTO

RTT?

Retransmission
ambiguity

Aside: problem would go
away if packets had a flag to

--------- indicate retransmission, or a
ACK field to uniquely identify each
arrives transmission and its ACK

(TCP has neither)

How to estimate RTT/RTO despite retxmit?

* One solution: Never update RTT measurements based on
ACKs from retransmitted packets

* Problem: Sudden change in RTT, coupled with many
retransmissions, can cause system to update RTT very late
* Ex: Primary path failure leads to a high-RTT secondary path

* If RTT estimates are not updated, the RTO estimate isn't,
and that leads to a host of other problems.
« Ex: Unnecessary retransmissions since RTOs needlessly expire

38

Karn’s algorithm

» Use back-off as part of the sampleRTT computation

* Whenever packet loss (RTO), RTO is increased by a factor
« Conservatively assume that RTT may have increased since the
last unambiguous RTTsamples were obtained
» Use this increased RTO as RTO estimate for the next

segment
* Don’t use the estimatedRTT from stale sampleRTT

* Only after an ACK is received for a successful transmission
is the RTO timer set to a value obtained from
EstimatedRTT .

Summary

 RTO computation is an important part of TCP’s behavior under
loss

* TCP uses both an average RTT as well as the variance to
obtain a safe prediction of an upper bound of a successful RTT

* Resolve retransmission ambiguity under path changes by
avoiding sampleRTT measurements and multiplicatively
increasing the RTO each time

CS 352
TCP Connection Management

CS 352, Lecture 13.4
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-S19

TCP connections need lots of bookkeeping

« Socket buffer memory
 Entries in connection lookup tables

 Data structures and parameters (e.g., sequence numbers) in
the operating system kernel

* These resources can get expensive on machines running many
connections, e.g., web servers

Handshake

: C : Client Server
 Before starting data transmission, TCP client app app

and server perform a handshake and agree
on parameters

accept () *

Econnect()

« TCP is bidirectional: independent set of Client Server

sequence numbers for each direction Syn
Cm
SeI‘VerSeq#
* Sequence numbers start from a random \OK
initial value N

« Specific TCP flags indicate connection
initiation and acceptance

TCP flags in the header

0

1 2 3

0123456789012 345678901234561789°01
totedt—tottotot—totott ottt ot ottt bttt —t ottt b=t —F—+—

Source Port | Destination Port

e I e ity SN B S Sy S

Fet bt —t—+

Sequence Number
B T T s T T R e h s o o
Acknowledgment Number

+—t—t—t—t—t—t—F—t—t—+-— +—t—t—t—t—t—t—F—t—t—t—t—t—F—F—t—+-—

Data | |U F|
Offset| Reserved < I Window

| |G N|

=ttt =ttt =ttt =ttt =t ettt ettt =ttt =t =t

Checksum | Urgent Pointer
—+—t—t—t—F—F—F—F—t—t—t—F—F—F—t—t—t—F—F—F -ttt —F—F—F -ttt —+—
Options | Padding
—t—t—t—t—F—F—F—t—t—t—F—F—F—F—t—t—t—F—F—F—F -ttt —F—F—F -ttt —+—
data
—t—t—t—t—F—F—t—t—t—t—t—F—F -ttt -t —F—F—F =ttt —F—F—F -t -t —+—
TCP Header Format
Note that one tick mark represents one bit position.

2-way handshake not enough

Client Server
app app
» Suppose the server receives the first SYN

packet and decides to allocate all the accept ()

resources needed for the connection. : connect ()

- What happens if a malicious client sendsa /e Server

ton of SYN packets?

» Asymmetric work: client doesn’t need to
allocate any resources of its own

 Just have to send a well-crafted packet
 However, server’s resources exhausted!

* SYN flood attack: a form of denial of service

Conseqguences

Client Server
app app

* The server should not allocate resources upon

receiving the first client message (SYN) accept () |
Econnect() E
- The server cannot carry any application data in ©lient Server
SYN/ACK
» Server hasn’t yet allocated all necessary resources K

* Client cannot send any data in the SYN packet

* Recall: HTTP requires an RTT for the
handshake before sending HTTP request

Mitigating the denial of service problem

» Key idea: Make the client do more work before allocating server
resources

* The client should send at least one more packet, responding to the
data in the server’'s SYN/ACK, before the server decides to call the
connection established

» That is, before all required server resources like buffers are allocated

* Result: 3-way handshake

* Per-connection finite state machine tracks this process

TCP 3-way handshake

Client Server
connect () accept () bind()
. S listen()
5 W
Send SYN :
Upon receiving SYN
K Send SYN/ACK
~ 5\(N'P‘G
Upon receiving
SYN/ACK
Send ACK i
Return from /4()/r
t
connect() - -7 Upon receiving ACK
-~
This packet can contain _, = Server "
application data! resources P ~7 | Return from
only allocated s accept ()

at this point ~

TCP: Closing a connection

= Client, server each close their side of connection
» send TCP segment with FIN bit = 1

* In general, TCP is full-duplex: both sides can send

* However, FIN is unidirectional: stop one side of the
communication

* Respond to received FIN with ACK
* On receiving FIN, ACK can be combined with own FIN

« Simultaneous FIN exchanges can be handled

Summary of TCP connection management

« TCP connections have associated resources: managing them
requires book-keeping the establishment of a connection carefully

« Simple 2-way handshakes suffer from denial of service vulnerability
* Moral: don’t allocate resources on the first client message

« 3-way handshake mitigates this issue by making client work harder
 Client must send ACK to server’s SYN/ACK before server can handle data
* The cost: increased time before sending application data from client

