
CS 352
Transport: Intro

CS 352, Lecture 7.1
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S19

Transport

Application

Transport

Network

Host-to-Net …

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 X.25 ATM

HTTPS

• Provide a communication
abstraction between application
processes
• Transport protocols run @

endpoints
• send side: transport breaks app messages

into segments, passes to network layer
• recv side: reassembles segments into

messages, passes to app layer

• Multiple transport protocols
available to apps
• Very popular in the Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport services and protocols

• Network layer: abstraction
to communicate between
endpoints. Network layer
provides best effort packet
delivery to a remote
endpoint.

• Transport layer:
communication abstraction
between processes.
Delivers packets to the
process.

Household analogy:
12 kids sending letters to 12

kids
• processes = kids
• app messages = letters in

envelopes
• endpoints = houses
• transport protocol = Alice

and Bob who de/mux to
in-house siblings
• network-layer protocol =

postal service

Transport vs. network layer

Identifying a single conversation
• Application connections are

identified by 4-tuple:

• Source IP address
• Source port
• Destination IP address
• Destination port

• In this analogy,

• Source address: the address of
the first house
• Source port: name of a kid in the

first house
• Destination address: the address

of the second house
• Destination port: name of a kid in

the second house

• Network layer: abstraction
to communicate between
endpoints. Network layer
provides best effort packet
delivery to a remote
endpoint.

• Transport layer:
communication abstraction
between processes.
Delivers packets to the
process.

Hotel analogy:
Hotel residents order food to their

rooms from a restaurant using
a delivery service.
• processes = residents of rooms

and restaurant chefs
• app messages = food packages
• endpoint = the hotel / restaurant
• transport protocol = local hotel

staff who bring the food to the
different rooms
• network-layer protocol = food

delivery service

Transport vs. network layer

Identifying a single conversation
• Application connections are

identified by 4-tuple:

• Source IP address
• Source port
• Destination IP address
• Destination port

• In this analogy,

• Source address: the address of
the restaurant
• Source port: the chef preparing

the specific order
• Destination address: the address

of the hotel
• Destination port: room number in

the hotel

CS 352
Demultiplexing Packets

CS 352, Lecture 7.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

9

http://www.cs.rutgers.edu/~sn624/352-S19

Two popular transports

Transmission Control
Protocol (TCP)
• Connection-based: the

application remembers the
other process talking to it.
• Suitable for longer-term,

contextual data transfers, like
HTTP, file transfers, etc.
• Guarantees: reliability,

ordering, congestion control

User Datagram Protocol
(UDP)
• Connectionless: app doesn’t

remember the last process or
source that talked to it.
• Suitable for single req/resp

flows, like DNS.
• Guarantees: basic error

detection

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…
…

…
…
…

Port 65535

socket() Ports

Denotes an
attachment point
with the network.

Link layer

Network

Transport

Applications

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…
…

…
…
…

Port 65535

socket() Ports

Network

Transport
Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…
…

…
…
…

Port 65535

socket() Ports

Src IP, Dst IP,
Tp Protocol

Src port, Dst port
Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…
…

…
…
…

Port 65535

socket() Ports

Src IP, Dst IP,
Tp Protocol

Src port, Dst port

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…
…

…
…
…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…
…

…
Port 44262

…
Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…
…

…
…
…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

UDP sockets:
(dst IP, dst port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connectionless:
the socket is
common across
all sources!

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…
…

…
…
…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets** Some caveats!

(src IP, dst IP, src port, dst
port)
è
Socket ID

UDP sockets:
(dst IP, dst port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connectionless:
the socket is
shared across
all sources!

TCP sockets of different types
Listening (bound but
unconnected)

On server side
ss = socket(AF_INET, SOCK_STREAM)
ss.bind(serv_ip, serv_port)
ss.listen() # no accept() yet

Connected (Established)

On server side
csockid, addr = ss.accept()

On client side
cs.connect(serv_ip, serv_port)

(src IP, dst IP, src port, dst port)
è

Socket (csockid, not ss)

TCP sockets of different types
Listening (bound but
unconnected)

On server side
ss = socket(AF_INET, SOCK_STREAM)
ss.bind(serv_ip, serv_port)
ss.listen() # no accept() yet

Connected (Established)

On server side
csockid, addr = ss.accept()

On client side
cs.connect(serv_ip, serv_port)

(src IP, dst IP, src port, dst port)
è

Socket (csockid, not ss)

(dst IP, dst port)
è

Socket (ss)

accept()
creates a new
socket with the
4-tuple
(established)
mapping

Enables new connections to be
demultiplexed correctly Enables existing connections to be demultiplexed correctly

Listing sockets and connections
• A small demo
• List all sockets with ss
• Create and observe UDP sockets with iperf
• Observe a TCP listening socket with iperf (or your own server!)

