
CS 352
Network Security: Introduction

CS 352, Lecture 25.1
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S19

Security and the Network Stack
Application

Transport

Network

Link …

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 802.3 ATM

HTTPS

Security: cuts across all
parts of the network stack!

Why network security?
• The Internet is used for all sorts of things

• Banking and commerce
• Interconnecting electronic voting machines
• Interacting with the Government, your employer, school, …
• Shopping online, including essentials like milk or groceries
• Sometimes, even basic social interactions require the Internet!

• But malicious people share your network
• People who want to snoop, pretend, steal

• “Attacks” can be passive or active
• Sit and snoop (e.g., credit card info)
• Actively target (e.g., phishing)

Some key aspects of network security
Confidentiality: only the sender and the intended receiver

should understand the message contents
Integrity: sender, receiver want to ensure message not
altered (in transit, or afterwards) without detection
Authentication: confirm the identity of communicating parties
Non-repudiation: Once someone sends a message, or
conducts a transaction, they can’t later deny the contents of
that message
Availability: sender and receiver able to communicate at all

Friends and enemies: Alice, Bob, Trudy

• Two parties, Bob and Alice, want to communicate
securely
• Often used in network security examples

• Trudy (intruder) may intercept, delete, add messages

secure
sender

secure
receiver

channel data, control
messages

data data

Alice Bob

Trudy

Who/what might Bob and Alice be?

• Real humans J
• Web browser/server for electronic transactions

• e.g., on-line purchases, or online banking
• DNS clients and servers
• Routers exchanging routing table updates
• Two mail clients

• Many other examples!

What might Trudy do?
• Eavesdrop: intercept messages
• Entity in the middle: actively insert messages into

connection
• Impersonation: can fake (spoof) source address in

packet (or any field in packet)
•Hijacking: “take over” ongoing connection by removing

sender or receiver, inserting itself in place
•Denial of service: prevent service from being used by

others (e.g., by overloading resources)

What we will learn in the next lectures

• Principles of network security
• Primitives for confidentiality, authentication, integrity, non-

repudiation

•How to apply these principles to secure:
• An application: e-mail
• Transport: TLS (Transport Layer Security for TCP)

Network security is a broad area
• Many exciting topics!
• Security for apps and transport protocols: e.g., QUIC
• Security at all layers: Network layer (e.g., IPSec, VPNs); Link

layer (e.g., WPA)
• Security for protocols, e.g., DNSSEC, BGPSEC
• Operational security: how to secure a network

• Firewalls, intrusion detection/prevention, data breach security, …
• Covering these and other topics in network & system security

would require its own set of courses J

CS 352
Cryptography: Introduction

CS 352, Lecture 25.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

11

http://www.cs.rutgers.edu/~sn624/352-S19

Confidentiality

•Confidentiality: only the sender and the intended
receiver should understand the message contents
•How to achieve this goal?
• Cryptography

• Sender encrypts a message, receiver decrypts it.
• An intermediate observer should just see random bytes!

Terminology of Cryptography

m, plaintext KA(m), ciphertext

KA

encryption
algorithm

Alice’s
encryption
keyAlice

Trudy
m: plaintext message
KA, Alice’s encryption key. Secret known only to Alice
KA(m) is ciphertext: m encrypted with key KA
Encryption transforms the message so that it’s jumbled
Ideal: want KA(m) to be uncorrelated with m (Trudy can’t read the msg)

Terminology of Cryptography

m, plaintext KB(KA(m)), plaintextKA(m), ciphertext

KA

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

KBAlice Bob

Trudy
KB is Bob’s decryption key, a secret known only to Bob
m’ = KB(c), c decrypted with key KB. KB(c) is plaintext
Want Bob to retrieve the same plaintext as the one sent by Alice
Want m = KB(KA(m))
Encryption and decryption algorithms are also called ciphers.

Algorithms and Keys
• Cryptography requires algorithms (for encryption and decryption)

and keys (parameters fed to the algorithms)
• Cryptography practice: algorithms must be publicly known

• Inspires trust that it works: obvious flaws found sooner
• Openness fosters innovation: techniques can be improved by everyone

• On the other hand, keys are secret
• Keys must be hard to guess, e.g., 128-bit, 256-bit, 1024-bit

• Analogy: everyone knows how your house lock works, and they
use a similar design for their house lock

• “Everyone uses the same lock, so it must be a reliable lock”
• But only you know the combination for your lock

Two kinds of cryptography

• KA and KB are the same: symmetric key cryptography
• Next module

• KA and KB are different: public key cryptography
• Next lecture!

m, plaintext KB(KA(m)), plaintextKA(m), ciphertext

KA

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

KBAlice Bob

Trudy

CS 352
Symmetric Key Cryptography

CS 352, Lecture 25.3
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

18

http://www.cs.rutgers.edu/~sn624/352-S19

Symmetric Key Cryptography

• Alice and Bob use the same (symmetric) key, KS

• Abuse notation: KS(m) at Alice’s side is encryption, KS(c) at Bob’s
side is decryption
• m = KS(KS(m))
• Techniques of symmetric key crypto: substitution and permutation

m, plaintext KS(KS(m)), plaintextKS(m), ciphertext

KS

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

KSAlice Bob

Substitution-based ciphers
• Monoalphabetic cipher: substitute one letter for another
• Example 1: Caesar cipher. Replace each letter by letter shifted

by some number of characters in the alphabet
• Successor(2): a à c, b à d, …
• Predecessor(3): a à x, b à y, c à z, d à a, …

• Example 2. Generic substitution mapping cipher

• Key: mapping from 26 letters to 26 letters

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

“Easy” to guess the key
by observing the
ciphertext alone.
statistically analyze the
language. Some letters
are more common in
plaintext than others,
e.g., e and s are more
common than k, j, or z

Substitution-based ciphers
• Example 3. Polyalphabetic ciphers. Use N monoalphabetic

substitution ciphers with a pattern to cycle between them
• n substitution ciphers, M1,M2,…,Mn

• Cycling pattern:
• e.g., n=4: M1,M3,M4,M3,M2; M1,M3,M4,M3,M2; ..

• For each new plaintext symbol, use subsequent substitution
pattern in cyclic pattern

• Ciphertext for “dog”: substitute d from M1, o from M3, g from M4

• Key: n substitution ciphers, and the cyclic pattern

Substitution-based ciphers
• Example 4. One-time pad.

• XOR each bit of the plaintext with one bit of the shared key to generate
the ciphertext: ciphertext[i] = message[i] Å key-bits[i]

• Key: a truly random bit string, same size as the message, never
reused, held secret, and shared ahead of time

• Polyalphabetic cipher taken to an extreme: moving randomly through
randomly-chosen substitution ciphers

• Statistically very hard to break:
• All plaintexts are equally likely, since the key is truly random
• Guessing one part of the plaintext reveals nothing about other parts

• Claude Shannon: a cipher that achieves “perfect secrecy”

Permutation-based ciphers
• Instead of substituting letters in the plaintext, we change their order
• Key: the new order. Convenient to use a word to induce an order

A N D R E W
1 4 2 5 3 6
t h i s i s
a m e s s a
g e i w o u
l d l i k e
t o e n c r
y p t n o w

Say the key = ANDREW.
Sorted in alphabetical order, this is ADENRW.
We need to permute each 6-letter part of the
message as follows:
1st letter of plaintext à 1st letter of ciphertext
2nd letter of plaintext à 4th letter of ciphertext
3rd letter of plaintext à 2nd letter of ciphertext, etc.

Possible to guess the key by analyzing structure of language and common letters.

thisisamessageiwouldliketoencryptnow è tiihssaesmsagioewullkdietecdnrytopnw

Stream and Block Ciphers

Two types of symmetric ciphers

• Stream ciphers
• Encrypt one bit at time, possibly with some dependence on prior bits

• Block ciphers
• Break plaintext message in equal-size blocks
• Encrypt each block as a unit, typically independently

Stream Ciphers

• Combine each bit of keystream with bit of plaintext to get one bit
of ciphertext
• m(i) = ith bit of message, ks(i) = ith bit of keystream, c(i) = ith bit of

ciphertext
• Encryption: c(i) = ks(i) Å m(i) (Å = XOR)
• Decryption: m(i) = ks(i) Å c(i)
• Very similar to one-time pad, except that the key is generated

using a pseudorandom keystream generator

keystream
generatorInput key keystream

pseudo random

This strategy adopted by the RC4
cipher, deployed in early WiFi
security standards (WEP and WPA);
later deemed insecure

Block ciphers
• Message to be encrypted is processed in blocks of k bits (e.g.,

64-bit blocks).
• Example block substitution cipher: 1-to-1 mapping is used to

map k-bit block of plaintext to k-bit block of ciphertext
Example with k=3:

input output
000 110
001 111
010 101
011 100

input output
100 011
101 010
110 000
111 001

Ciphertext for 0 1 0 1 1 0 0 0 1 1 1 1? 101 000 111 001

Block ciphers
• How many possible k-bit block substitution ciphers exist?

• There are 2k values that are permuted amongst themselves: 2k!
• k=3-bit inputs: 8! è 40,320. Not that many.
• But huge for k=64.

• Using a table for substitution is impractical
• k=64: need 264-entry table; each entry has 64 bits

• Instead, use a function that simulates a randomly permuted table
• Some heavily used symmetric ciphers are block-based, e.g.,

AES

Summary of symmetric key ciphers so far
• Assume a pre-shared key between two communicating parties
• Key techniques: substitution and permutation
• Practical ciphers use a complex combination of the two
• Data Encryption Standard (DES)

• Multiple iterations of substitution and permutation using a 56-bit key
• Advanced Encryption Standard (AES)

• State of the art for symmetric key encryption. Hardware accelerated
• A cool animation to understand the steps in AES:

https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation
_v4_eng-html5.html

https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng-html5.html

CS 352
Improving Symmetric Key Crypto

CS 352, Lecture 25.4
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

31

http://www.cs.rutgers.edu/~sn624/352-S19

Review: Symmetric Key Cryptography

• Shared key at both ends, KS
• Algorithms are typically easy to understand and implement
• Achieves confidentiality: harder for Trudy to break ciphertext
• However, fails to provide integrity, authentication, and non-

repudiation
• Requires a pre-shared key between Alice and Bob

m, plaintext KS(KS(m)), plaintextKS(m), ciphertext

KS

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

KSAlice Bob

Trudy

Attempting authentication with
symmetric key crypto

An example: Login system
• Bob runs a login server to provide access to protected

resources

• Alice must present a password to login

• Exchange of password implemented using symmetric key
cryptography on top of block ciphers

Simple authentication strategy

Alice Bob

“Login: Alice”

Password please

KS(Alice’s password)

• Alice’s password is encrypted, and hence protected from
Trudy
• Assuming Bob is trusted, Bob can decrypt the password

using the shared secret key KS

Trudy

However, subject to replay attack

Alice Bob

“Login: Alice”

Password please

KS(Alice’s password)

• Trudy can store the observed ciphertext KS(password),
and replay it later to gain access to Bob’s server

Trudy
Store: KS(Alice’s password)

I’m Alice

Pass?

KS(p
ass)

Preventing replay attacks
• Key idea: Vary the ciphertext for the same plaintext sent at different

times.

• Make the ciphertext depend on a one-time value, randomly chosen
by Bob.

• e.g., a random number generated by Bob

• Nonce: a “number used once only”

• Alice must combine the password with the nonce before encryption

Challenge-Response with Nonce

Alice Bob

“Login: Alice”

“Password please” + Nonce

KS(Alice’s password, Nonce)

• The nonce changes each authentication attempt
• Trudy cannot reply an earlier ciphertext to produce a valid

password
• The nonce is different, so the expected ciphertext is different
• Nonces don’t have to be confidential

Trudy
Nonce2

KS(p
ass, Nonce1)

Protecting against general
replay attacks

Generally, repeated ciphertext is bad
• Real network protocols often have repeated plaintext

• e.g., the same web page content for the login screen
• e.g., application headers, like HTTP/1.1 GET
• The problem is more general: not just about repeating passwords!

• If the same plaintext shows up as the same ciphertext
repeatedly, that can be used to break the cipher
• Example: Block substitution ciphers: finding the mapping for

one part of one block means other ciphertext can be reversed to
guess plaintext of other blocks, and so on…
• Idea: Can we use nonces for all messages?

• Yes!

However, naïve nonces are inefficient!
• Suppose nonce is used as follows:

• Alice performs KS(message Å nonce) before transmitting
• If Alice must send N bits of plaintext, Bob must send N bits of nonce
• Doubles the number of bits exchanged overall!

• Want to generate nonces automatically & randomly @ Alice, but
still have Bob agree on the nonces. How?
• Cipher block chaining: use the previous ciphertext as a nonce

for the next plain text block
• The first block uses an Initialization Vector (IV): only first nonce

is sent explicitly by Bob

Cipher block chaining: encryption @ Alice

IV

M1

Å

C1

M2 M3

C2 C3

Å Å
Encrypt Encrypt EncryptSent by Bob

Plaintext

Ciphertext

Serv
e a

s

no
nc

e

C1 depends on the first
nonce, IV, not just the

plaintext M1

…

Agreeing on a shared key

How to agree on a shared secret key?
• In reality: two parties may meet in person or communicate “out

of band” to exchange shared key
• Often, communicating parties may never meet in person

• It’s very common not to meet someone you talk to over the Internet
• Amazon? Your bank?

• And what if the shared secret is stolen?
• Must exchange keys securely again!

• Q: how to exchange keys securely over an insecure network?

Next lecture: Public key cryptography

