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Security: cuts across all 
parts of the network stack!



Why network security?
• The Internet is used for all sorts of things

• Banking and commerce
• Interconnecting electronic voting machines
• Interacting with the Government, your employer, school, …
• Shopping online, including essentials like milk or groceries
• Sometimes, even basic social interactions require the Internet!

• But malicious people share your network
• People who want to snoop, pretend, steal

• “Attacks” can be passive or active
• Sit and snoop (e.g., credit card info)
• Actively target (e.g., phishing)



Some key aspects of network security
Confidentiality: only the sender and the intended receiver 

should understand the message contents
Integrity: sender, receiver want to ensure message not 
altered (in transit, or afterwards) without detection
Authentication: confirm the identity of communicating parties
Non-repudiation: Once someone sends a message, or 
conducts a transaction, they can’t later deny the contents of 
that message
Availability: sender and receiver able to communicate at all



Friends and enemies: Alice, Bob, Trudy

• Two parties, Bob and Alice, want to communicate 
securely
• Often used in network security examples

• Trudy (intruder) may intercept, delete, add messages

secure
sender

secure
receiver

channel data, control 
messages

data data

Alice Bob

Trudy



Who/what might Bob and Alice be?

• Real humans J
• Web browser/server for electronic transactions

• e.g., on-line purchases, or online banking
• DNS clients and servers
• Routers exchanging routing table updates
• Two mail clients

• Many other examples!



What might Trudy do?
• Eavesdrop: intercept messages
• Entity in the middle: actively insert messages into 

connection
• Impersonation: can fake (spoof) source address in 

packet (or any field in packet)
•Hijacking: “take over” ongoing connection by removing 

sender or receiver, inserting itself in place
•Denial of service: prevent service from being used by 

others (e.g., by overloading resources)



What we will learn in the next lectures

• Principles of network security
• Primitives for confidentiality,  authentication, integrity, non-

repudiation

•How to apply these principles to secure:
• An application: e-mail
• Transport: TLS (Transport Layer Security for TCP)



Network security is a broad area
• Many exciting topics!
• Security for apps and transport protocols: e.g., QUIC
• Security at all layers: Network layer (e.g., IPSec, VPNs); Link 

layer (e.g., WPA)
• Security for protocols, e.g., DNSSEC, BGPSEC
• Operational security: how to secure a network

• Firewalls, intrusion detection/prevention, data breach security, …
• Covering these and other topics in network & system security

would require its own set of courses J
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Confidentiality

•Confidentiality: only the sender and the intended 
receiver should understand the message contents
•How to achieve this goal?
• Cryptography

• Sender encrypts a message, receiver decrypts it.
• An intermediate observer should just see random bytes!



Terminology of Cryptography

m, plaintext KA(m), ciphertext

KA

encryption
algorithm

Alice’s 
encryption
keyAlice

Trudy
m: plaintext message
KA, Alice’s encryption key. Secret known only to Alice
KA(m) is ciphertext: m encrypted with key KA
Encryption transforms the message so that it’s jumbled 
Ideal: want KA(m) to be uncorrelated with m (Trudy can’t read the msg)



Terminology of Cryptography

m, plaintext KB(KA(m)), plaintextKA(m), ciphertext

KA

encryption
algorithm

decryption 
algorithm

Alice’s 
encryption
key

Bob’s 
decryption
key

KBAlice Bob

Trudy
KB is Bob’s decryption key, a secret known only to Bob
m’ = KB(c), c decrypted with key KB. KB(c) is plaintext
Want Bob to retrieve the same plaintext as the one sent by Alice
Want m = KB(KA(m))
Encryption and decryption algorithms are also called ciphers.



Algorithms and Keys
• Cryptography requires algorithms (for encryption and decryption) 

and keys (parameters fed to the algorithms)
• Cryptography practice: algorithms must be publicly known

• Inspires trust that it works: obvious flaws found sooner
• Openness fosters innovation: techniques can be improved by everyone

• On the other hand, keys are secret
• Keys must be hard to guess, e.g., 128-bit, 256-bit, 1024-bit

• Analogy: everyone knows how your house lock works, and they 
use a similar design for their house lock

• “Everyone uses the same lock, so it must be a reliable lock”
• But only you know the combination for your lock



Two kinds of cryptography

• KA and KB are the same: symmetric key cryptography
• Next module

• KA and KB are different: public key cryptography
• Next lecture!
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Symmetric Key Cryptography

• Alice and Bob use the same (symmetric) key, KS

• Abuse notation: KS(m) at Alice’s side is encryption, KS(c) at Bob’s 
side is decryption
• m = KS(KS(m))
• Techniques of symmetric key crypto: substitution and permutation

m, plaintext KS(KS(m)), plaintextKS(m), ciphertext
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Substitution-based ciphers
• Monoalphabetic cipher: substitute one letter for another
• Example 1: Caesar cipher. Replace each letter by letter shifted 

by some number of characters in the alphabet
• Successor(2): a à c, b à d, …
• Predecessor(3): a à x, b à y, c à z, d à a, …

• Example 2. Generic substitution mapping cipher

• Key: mapping from 26 letters to 26 letters

plaintext:  abcdefghijklmnopqrstuvwxyz

ciphertext:  mnbvcxzasdfghjklpoiuytrewq

“Easy” to guess the key 
by observing the 
ciphertext alone.
statistically analyze the 
language. Some letters 
are more common in 
plaintext than others, 
e.g., e and s are more
common than k, j, or z



Substitution-based ciphers
• Example 3. Polyalphabetic ciphers. Use N monoalphabetic 

substitution ciphers with a pattern to cycle between them
• n substitution ciphers, M1,M2,…,Mn

• Cycling pattern:
• e.g., n=4: M1,M3,M4,M3,M2;   M1,M3,M4,M3,M2; ..

• For each new plaintext symbol, use subsequent substitution 
pattern in cyclic pattern

• Ciphertext for “dog”: substitute d from M1, o from M3, g from M4

• Key: n substitution ciphers, and the cyclic pattern



Substitution-based ciphers
• Example 4. One-time pad. 

• XOR each bit of the plaintext with one bit of the shared key to generate 
the ciphertext: ciphertext[i] = message[i] Å key-bits[i]

• Key: a truly random bit string, same size as the message, never 
reused, held secret, and shared ahead of time

• Polyalphabetic cipher taken to an extreme: moving randomly through 
randomly-chosen substitution ciphers

• Statistically very hard to break:
• All plaintexts are equally likely, since the key is truly random
• Guessing one part of the plaintext reveals nothing about other parts

• Claude Shannon: a cipher that achieves “perfect secrecy”



Permutation-based ciphers
• Instead of substituting letters in the plaintext, we change their order
• Key: the new order. Convenient to use a word to induce an order

A N D R E W
1 4 2 5 3 6
t h i s i s
a m e s s a
g e i w o u
l d l i k e
t o e n c r
y p t n o w

Say the key = ANDREW. 
Sorted in alphabetical order, this is ADENRW. 
We need to permute each 6-letter part of the 
message as follows:
1st letter of plaintext à 1st letter of ciphertext
2nd letter of plaintext à 4th letter of ciphertext
3rd letter of plaintext à 2nd letter of ciphertext, etc.

Possible to guess the key by analyzing structure of language and common letters.

thisisamessageiwouldliketoencryptnow è tiihssaesmsagioewullkdietecdnrytopnw



Stream and Block Ciphers



Two types of symmetric ciphers

• Stream ciphers
• Encrypt one bit at time, possibly with some dependence on prior bits

• Block ciphers
• Break plaintext message in equal-size blocks
• Encrypt each block as a unit, typically independently



Stream Ciphers

• Combine each bit of keystream with bit of plaintext to get one bit 
of ciphertext
• m(i) = ith bit of message, ks(i) = ith bit of keystream, c(i) = ith bit of 

ciphertext
• Encryption: c(i) = ks(i) Å m(i)   (Å = XOR)
• Decryption: m(i) = ks(i) Å c(i) 
• Very similar to one-time pad, except that the key is generated 

using a pseudorandom keystream generator

keystream
generatorInput key keystream

pseudo random

This strategy adopted by the RC4 
cipher, deployed in early WiFi
security standards (WEP and WPA); 
later deemed insecure



Block ciphers
• Message to be encrypted is processed in blocks of k bits (e.g., 

64-bit blocks).
• Example block substitution cipher: 1-to-1 mapping is used to 

map k-bit block of plaintext to k-bit block of ciphertext
Example with k=3:

input output
000      110
001       111
010       101
011       100

input output
100      011
101      010
110      000
111       001

Ciphertext for 0 1 0 1 1 0 0 0 1 1 1 1? 101 000 111 001



Block ciphers
• How many possible k-bit block substitution ciphers exist?

• There are 2k values that are permuted amongst themselves: 2k!
• k=3-bit inputs: 8! è 40,320.  Not that many.
• But huge for k=64.

• Using a table for substitution is impractical
• k=64: need 264-entry table; each entry has 64 bits

• Instead, use a function that simulates a randomly permuted table
• Some heavily used symmetric ciphers are block-based, e.g., 

AES



Summary of symmetric key ciphers so far
• Assume a pre-shared key between two communicating parties
• Key techniques: substitution and permutation
• Practical ciphers use a complex combination of the two
• Data Encryption Standard (DES)

• Multiple iterations of substitution and permutation using a 56-bit key
• Advanced Encryption Standard (AES)

• State of the art for symmetric key encryption. Hardware accelerated
• A cool animation to understand the steps in AES: 

https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation
_v4_eng-html5.html

https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng-html5.html
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Review: Symmetric Key Cryptography

• Shared key at both ends, KS
• Algorithms are typically easy to understand and implement
• Achieves confidentiality: harder for Trudy to break ciphertext
• However, fails to provide integrity, authentication, and non-

repudiation
• Requires a pre-shared key between Alice and Bob

m, plaintext KS(KS(m)), plaintextKS(m), ciphertext

KS

encryption
algorithm

decryption 
algorithm

Alice’s 
encryption
key

Bob’s 
decryption
key
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Attempting authentication with 
symmetric key crypto



An example: Login system
• Bob runs a login server to provide access to protected 

resources

• Alice must present a password to login

• Exchange of password implemented using symmetric key 
cryptography on top of block ciphers



Simple authentication strategy

Alice Bob

“Login:  Alice”

Password please

KS(Alice’s password)

• Alice’s password is encrypted, and hence protected from 
Trudy
• Assuming Bob is trusted, Bob can decrypt the password 

using the shared secret key KS

Trudy



However, subject to replay attack

Alice Bob

“Login:  Alice”

Password please

KS(Alice’s password)

• Trudy can store the observed ciphertext KS(password), 
and replay it later to gain access to Bob’s server

Trudy
Store: KS(Alice’s password)

I’m Alice

Pass?

KS(p
ass)



Preventing replay attacks
• Key idea: Vary the ciphertext for the same plaintext sent at different 

times.

• Make the ciphertext depend on a one-time value, randomly chosen 
by Bob.

• e.g., a random number generated by Bob

• Nonce: a “number used once only”

• Alice must combine the password with the nonce before encryption



Challenge-Response with Nonce

Alice Bob

“Login:  Alice”

“Password please” + Nonce

KS(Alice’s password, Nonce)

• The nonce changes each authentication attempt
• Trudy cannot reply an earlier ciphertext to produce a valid 

password
• The nonce is different, so the expected ciphertext is different
• Nonces don’t have to be confidential

Trudy
Nonce2

KS(p
ass, Nonce1)



Protecting against general 
replay attacks



Generally, repeated ciphertext is bad
• Real network protocols often have repeated plaintext

• e.g., the same web page content for the login screen
• e.g., application headers, like HTTP/1.1 GET
• The problem is more general: not just about repeating passwords!

• If the same plaintext shows up as the same ciphertext 
repeatedly, that can be used to break the cipher
• Example: Block substitution ciphers: finding the mapping for 

one part of one block means other ciphertext can be reversed to 
guess plaintext of other blocks, and so on…
• Idea: Can we use nonces for all messages?

• Yes!



However, naïve nonces are inefficient!
• Suppose nonce is used as follows: 

• Alice performs KS(message Å nonce) before transmitting
• If Alice must send N bits of plaintext, Bob must send N bits of nonce
• Doubles the number of bits exchanged overall!

• Want to generate nonces automatically & randomly @ Alice, but 
still have Bob agree on the nonces. How?
• Cipher block chaining: use the previous ciphertext as a nonce 

for the next plain text block
• The first block uses an Initialization Vector (IV): only first nonce 

is sent explicitly by Bob



Cipher block chaining: encryption @ Alice

IV

M1

Å

C1

M2 M3

C2 C3

Å Å
Encrypt Encrypt EncryptSent by Bob

Plaintext

Ciphertext

Serv
e a

s 

no
nc

e

C1 depends on the first 
nonce, IV, not just the 

plaintext M1

…



Agreeing on a shared key



How to agree on a shared secret key?
• In reality: two parties may meet in person or communicate “out 

of band” to exchange shared key
• Often, communicating parties may never meet in person

• It’s very common not to meet someone you talk to over the Internet
• Amazon? Your bank?

• And what if the shared secret is stolen?
• Must exchange keys securely again!

• Q: how to exchange keys securely over an insecure network?

Next lecture: Public key cryptography




