CS 352 Network Address Translation

CS 352, Lecture 17.1 http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

Network

The main function of the network layer is to move packets from one endpoint to another.

Background: The Internet's growing pains

- Networks had incompatible addressing
 - IPv4 versus other network-layer protocols (X.25)
 - Routable address ranges different across networks
- Entire networks were changing their Internet Service Providers
 - ISPs didn't have to route directly to internal endpoints, just to the gateway
- IPv4 address exhaustion
 - Insufficient large IP blocks even for large networks
 - Rutgers (AS46) has > 130,000 publicly routable IP addresses
 - IIT Madras (a well-known public university in India, AS141340) has 512

Network Address Translation

- When a router modifies fields in an IP packet to:
- Enable communication across networks with different (networklayer) addressing formats and address ranges
- Allow a network to change its connectivity to the Internet en masse by modifying the source IP to a (publicly-visible) gateway IP address
- Masquerade as an entire network of endpoints using (say) one publicly visible IP address
 - Effect: use fewer IP addresses for more endpoints!

- The gateway's IP, 138.76.29.7 is publicly visible
- The local endpoint IP addresses in 10.0.0/24 are private
- All datagrams leaving local network have the same source IP as the gateway

That is, for the rest of the Internet, the gateway masquerades as a single endpoint representing (hiding) all the private endpoints. The entire network just needs one (or a few) public IP addresses.

The NAT gateway router accomplishes this by using a different transport port for each distinct (transport-level) conversation between the local network and the Internet.

Features of IP-masquerading NAT

- Use one or a few public IPs: You don't need a lot of addresses from your ISP
- Change addresses of devices inside the local network freely, without notifying the rest of the Internet
- Change the public IP address freely independent of network-local endpoints
- Devices inside the local network are not publicly visible, routable, or accessible
- Most IP masquerading NATs block incoming connections originating from the Internet
 - Only way to communicate is if the internal host initiates the conversation

If you're home, you're likely behind NAT

- Most access routers (e.g., your home WiFi router) implement network address translation
- You can check this by comparing your local address (visible from ifconfig) and your externally-visible IP address (e.g., type "what's my IP address?" on your browser search bar)

If you're home, you're likely behind NAT

what's my ip address	Q
All Images Videos News Maps Answer	Settings 🔻
Your ID address is 74102.70.200 in New Prupowick, New Jorsey J	Inited States (08001)

Your IP address is 74.102.79.209 in New Brunswick, New Jersey, United States (08901)

Limitations of IP-masquerading NATs

- Connection limit due to 16-bit port-number field
 - ~64K total simultaneous connections with a single public IP address

NAT can be controversial

- "Routers should only manipulate headers up to the network layer, not modify headers at the transport layer!"
- Application developers must take NAT into account
 - e.g., peer-to-peer applications like Skype
- Purists: address shortage should instead be solved by IPv6
 - (subject of the next module)

CS 352 Internet Protocol: Version 6

CS 352, Lecture 17.2 http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

IPv4 address space exhaustion

- The Internet has run out of IPv4 address blocks to allocate
- Yet, demand for more (public) IP addresses is increasing
 - More organizations moving online, new services, more replication
 - More devices: your phone, your watch, your smart refrigerator
- Fundamental issue: 32-bit addresses are not numerous enough
- IP version 6 (IPv6)

IPv6: Main changes from IPv4

- Large address space: 128-bit addresses (16 bytes)
 - Allows up to 3.4×10^{38} unique addresses
- Fixed length headers (40 bytes)
 - Improves the speed of packet processing in routers
 - IPv6 options processing happens through a separate mechanism: using the field corresponding to the upper-layer protocol
- New control message protocol: ICMPv6
- No datagram fragmentation
 - The ICMPv6 packet too big control message informs the source

IPv6: Main changes from IPv4

- New quality of service bits: flow label and traffic class
 - Flow label: denotes packets belonging to the same conversation
 - How the field is populated (ie: what exactly belongs to a "flow") isn't specified
 - Routers may choose to provide performance guarantees to flows of specific traffic classes (more on this later)
- No IP checksum: remove redundant error detection mechanisms
 - Checksums exist already on common transport (TCP/UDP) and link layer (Ethernet) headers

IPv6 datagram format

- Version: 6
- Class and flow label: for traffic differentiation at routers
- Next header: same as the upperlayer protocol in IPv4. Also used to include IPv6 options
- Hop limit: same as TTL in IPv4

ver	class	flow label		
ĥ	bayload	len next hdr		hop limit
		source address (128 bits)		
C		destinatio (128	on address 8 bits)	

32 bits -

IPv6 datagram format

- Version: 6
- Class and flow label: for traffic differentiation at routers
- Next header: same as the upperlayer protocol in IPv4. Also used to include IPv6 options
- Hop limit: same as TTL in IPv4

ver	class	flow label			
payload len			next hdr	hop limit	
source (128			address bits)		
destination (128		on address 5 bits)			
data					
← 32 bits					

Can you spot the differences?

ver	class	flow label			
payload len			next hdr	hop limit	
source a (128			address bits)		
destinatio (128		on address 8 bits)			
data					
← 32 bits					

ver	hdr Ien	type of service	length		
16-bit identifier		flags	fragment offset		
tim	e to	upper	header		
liv	ve	protocol	checksum		
	32-bit source IP address				
32-bit destination IP address					
Options (if any)					
data (variable length, typically a TCP or UDP segment)					
∠ 32 hits					

IPv6 addresses

- IPv6 uses IPv4-CIDR-like (classless) addressing
- Notation: xx:xx:xx:xx:xx:xx:xx:xx
 - x = 4-bit hex number
 - Contiguous 0s are compressed: 47CD::A456:0124
- An IPv4-compatible IPv6 address has a prefix of 96 0-bits
 - Example: ::128.64.18.87
- Globally routable unicast addresses must start with bits 001
- CIDR prefixes written the usual way:
 - Example: 2000::/48 can contain 2⁸⁰ endpoints

IPv6 adoption

When IP became a mainstream network-layer protocol, IPv4 was baked into router hardware.

~0% of Internet hosts used IPv6 for a long time – (about 30 years)

In 2012, Google and a bunch of large orgs decided to support IPv6 irrevocably.

CS 352 Address Resolution Protocol

CS 352, Lecture 17.3 http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

Background: Let's peek into the link layer

- Each network adapter has a hardware address or a MAC address
 - E.g., the Wi-Fi adapter on your laptop has one
- Assigned by the manufacturer, not expected to vary over time
 - Think about it as an identifier for the device
- To communicate over a single link, a sender needs the destination hardware address
- Directory mechanisms like DNS and bootstrapping mechanisms like DHCP provide IP addresses
- Given an IP address, how does an endpoint find the hardware address?

Address Resolution Protocol (ARP)

- ARP solves the following problem. Given an IP, find the machine's hardware address
 - IP \rightarrow MAC resolution
- All endpoints that are looked up are expected to be within the same network
- Hence, address resolution can use broadcast:
 - We don't need to develop directory mechanisms like DNS
 - Send (ARP) queries to everyone, asking for a MAC given an IP

ARP packet format

- Hardware type: link-layer protocol
 - Example: Ethernet (1)
- Hardware address length:
 - Example: Ethernet = 6 bytes
- Protocol Type: network-layer protocol
 - Example: IPv4 (0x0800)
- Protocol address length
 - Example: IPv4 = 4 bytes
- Operation:
 - ARP request: 1, reply: 2
- Sender's addresses
- Address to be resolved (or response)

Internet Protocol (IPv4) over Ethernet ARP packet

Octet offset	0	1	
0	Hardware type (HTYPE)		
2	Protocol type (PTYPE)		
4	Hardware address length (HLEN)	Protocol address length (PLEN)	
6	Operation	n (OPER)	
8	Sender hardware address (SHA) (first 2 bytes)		
10	(next 2 bytes)		
12	(last 2 bytes)		
14	Sender protocol address (SPA) (first 2 bytes)		
16	(last 2 bytes)		
18	Target hardware address (THA) (first 2 bytes)		
20	(next 2 bytes)		
22	(last 2 bytes)		
24	Target protocol address (TPA) (first 2 bytes)		
26	(last 2 bytes)		

Hardware type: Ethernet Protocol type: IPv4 Hardware addr length: 6 Protocol addr length: 4 Operation: 2 (reply) Sender hardware addr: 05:23:f4:3d:e1:04 Sender protocol addr: 128.195.1.20 Target HW addr: 98:22:ee:f1:90:1a Target protocol addr:

Communicating outside the local net?

- Suppose endpoint A wants to communicate with endpoint B that is in a different network
- ARP broadcast outside the local network is too expensive
 - How does one limit the scope of the broadcast? Internet-wide?
- Besides, the hardware address format used by B's network might be different from that of A's network!
- ARPs are not meaningful across network boundaries
- Communicating to a network-external endpoint just means sending the packet to the gateway router
 - Host can know that a destination is external using IP addr and netmask
 - Host can talk to the gateway using DHCP (to get IP) and ARP (to get MAC)

Summary of ARP

- A useful mechanism to allow hosts inside a network to communicate:
- ARP protocol helps resolve IP addresses into MAC addresses using a broadcast mechanism
- Communication outside the local network requires ARP-ing for and sending packets to the gateway